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TRANSONIC FLOW’ PAST A WEDGE PROFILE WITH DETACHED BOW WAVE ‘

By WALTEE G. VINCEWI and CLEO B. ‘iVAOONEE

SUM

.4 theoretical study has been made qf the aerodynamic charac-
kri8tic8 at zero angle of attack of a thin, doubly symmetrical
double-~edge profde in the range OJ 8uperwnic jlight speed in
which the bow ware is detached. The ana[yk+ utilizes the
equation8 of the transonic sma~[di$turbance theory and inro[ce8
no assumptions beyond those imp[im’t in this theory. The
mixed $0 w about the front half of the pro,file is calculated by
rda.xation solution of a boundary-ralue problem for the ,transanic
wna~di8turbarwe equation in the hodograph plane (i.e., the
Tricomi equation]. T7Lt?m&hods follow estab[i8hed line8 exce~t
for the 8omeuW norel treatment of the bounaky conditwns
aiong the 8hoch! po[ar and sonic he. The purely supersonic
flow about the rear of “theprojle i8found by mean8 of the method
of characterislic8 specialized to the transa n ic 8ma[[&i8turbance
theory. Complete calculativn8 were nude-for four rafue8 of the
transonic similarity parameter. Zle8e were found suJicient
to bridge the gap between the preriou8 re8ult8 of Guderley and
l“o~hihara at a illach number of 1 and the re8u[t8 which arc
readily obtained zohen the bow ware is attached and the @o is
cmnpletely 8uper80nic.

The results of the study prouide thefoffoun.ng information a8 a
function of the transonic tn”milan”~ parameter: (1] dupe and
[ocation of bow mare and sonic line, (2] chordun.8e distr?.bution
(If Mach number and pressure, and ($?]integrated pressure drag
t~ffront wedge, rear uwdge, and complete profile. The redts
hw that the local Mach number at a fired point on a profde
I)f gicen thickne8$ ratio increases ‘monotonicaffy a8 the free-
8tream Mach number increa8e8 from 1. In agreement UM
other recent j$nd[)bg8, thi8 increa8e k at j%t wry slight for a
considerable irecrem~nt awy from the sonic flight condition.
The coej%v.ent of preseure dmg for the complete projile mzm”e8
rdatirely slightly near the ~onic flight 8peed, de&ea8e8 rap”d[y
~n the n“cinify ~f”bowware attachmtn t~and then decrea$e8 at a
progr~8&irely [ess rapid rate in the range of purely wpersonic
Jlou?.

INTRODUCTION

At supersonic flight speeds, the flow field about a wedge of
ittiite span is characterized at zero angle of attack by a
symmetrical, twodimensional shock wave. This wave,
which forms either on or in front of the apex of the wedge, is

1Sue N.4Cii TN 23% “TrmwzUc Flow Pasts Wedge Prde With D&ched Bow
\Vave-CkmzalAUJLYticalMethod and Ffnd Cak+rlaM Wsults” b~ Falter G. VtmeM
and Cleo B. Wammr, 1S51,and NACA TN” 25S, “Trammrdc FIow Past a Wedge PmEIe
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ARY

oded the bow wave m recognition of its analogy to the
surface wave which forms at the bovr of a moving ship. As
is well lmown, the shape of the bow wave and the nature of
the flow about the wedge vary depending upon the apex angle
of the vredge and the Mach ntiber of tha free stream.
Consider, for simplicity, the case of a wedge of fixed tmgle.
It wilIbe assumed that the wedge is perfectIy sharp and that
the eflects of viscosity are negligible. It will also be assumed
that the wedge is of finite length in the strepmwise direction.
Under these circumstances, three essentia.IIydifkent regimes
of flow are possible, depending on the Mach number of the
free stream:

1. Attached bow wave with purely supersonic flow:
Above a certain free-stream Mach number, the value of
which depends on the magnitude of the wedge angle, the bow
wave is attached to the apex of the wedge, and the locaI flow
at all points downstream of the -rave is supersonic. Under
these conditions, the velocity at the surface of the wedge is
uniform, and the bow wave is straight out to its point ti
int~rsection with the first Mach wave. from the downstream
end of the wedge. This regime of purely supersonic flow
was first studied by l?ra.ndtland Meyer as long ago as 190S
(reference 1) and is now to be found analyzed in any standard
text on gas dynamics.

2. Attached bow wave with nixed subsonic and supersonic
flow: As the free-stream Mach number is reduced in the
purely supersonic regime, a condition is eventually reached
at. which the hcal velocity downstream of the straight por-
tion of the bow wave is exactly sonic. ‘i’ilth further rsduc-
tion in Mach number, the flow in the vicinity of the wedge
becomes subsonic, and the entire fundamental nature of the
flow field ia altered. For a smalI range of free-stream Mac4 .
number, the bow wave remains attached to the apex, but the
velocity tdo~u the surface of the wedge is now nonuniform.
The wave i~elf, though still inclined toward the rear at all .
points, is now curved starting from ik b@nning at the apex.
The rather complex sequence of e-rents in this particular
regime of riixed subsonic and supersonic flow has been
clarified by Guderley (reference 2), but no specific calcula-
tions have been made. Hnce the regime prcwaik over only
a narrow range of Mach number, the lack of quantitative
information is not of serious consequence.

3. Detached bow wave: At a free-stream Mach number
31ightly below that which gives sonic flow behind the bow
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wave, a Iimiting condition is reached below which tinattached
wave is no longer possible. At lower Mach numbers, there-
fore, the wave detaches from the apex and stands in the
stream forward of the wedge. In this regime of flow, which
prevails down to a Mach number of 1, the subsonic flow over
tht’.surface of the wedge has a stagnation point at-the apex.
The element of the curved bow wave directly ahead of the
apex is now normal to the direction of the- free stream.
This regime of mkxl flow may occupy a c.onsider~bleinterval
of A[ach number in the.currentiy important.range of transonic
flight speeds. Because of WEculties inherent in the ma.thc-
matics of the problem, however, quantitative theoretical
results free of special assumptions arc generally Iac.king.

Perhaps the first calculations of the flow about u finite
wedge with detached bow wave were made by Maccoll and
Codd in England Mwcen 1938 and 1942 (reference 3) and
were rcpmtid by Macco]l at the 6th International Congress
of Applied Afechanics in Paris in 1946 (reference 4). In this
initid work, the computations were carried out in Lhcplane
of physical coordinate-or, more precisely, in a plane of
distorted physical coordinaks. For reasons which. will
fippear later, a. direct solution was not possible with this
apprcmrh,so that recourse was had to a method of successi~e
approximat.ioris. The successive approximations were ob-
tainc(? by numerical integration of the partial differential
equations of fluid motion in the subsonic portion of the fiow
field. By this means Maccoll and Codd were able to ohtaiu
results for the mixed flow about bodies of various shape.
Tlw calculations for the wedge with a detached wave were
ronfitwd, however, to the single case.of a free-stream hfach
number of 1.5 and a tottd wedge angle of 40°.

An alternative method of aualjwis, which eliminates the
twed for successive approximations, has bcon described
independently by Franlil (1945) in Russia and by Gudcrley
(1947) in this country “(references 5 and 2, respectively).
In this approach, the problem of the wedge with det~chtwl
wave is formulated as ‘a boundary-value problem with the
veloc.it,y components as t,hc independent variables. Using
this hodograph method, Frrmkl \vasable to prove thtit the
solution of the. detached-wave problem is unique. (This
had hwm tacitly assumrd by Maccoll and Codd.] GuderIey,
followiilg a similar approach, showed how the hodograph
problem cm be simplified I)y rcstricLionto small disturbances
about the sonic velocity. Thtxw developments have b~en
subsequently reviewed in nonmathematical form by Busc.-

‘ mann (reference 6). More recently (1949), Guderley and
Yoshihara, using the small-disturbance theory, have obtt]inetl
a quantitative solution for the finite wedge. at a free-stream
h[ach number of 1 (reference 7). In this sp~cial limiting
case, the bow wave dhappears at infinity upstream, which
facilitates the mathematical analysis. The corresponding
boundary-value problcm in the hodograph plane was solved
anul~:tic’a]lyby Guderley and Yo~hihara with the aid of
Founcr analysis and a harmonic analyzer. For free-stream
hiarh numbw greater than 1, a comparable. analytical
solution of the.boundary-value problem is not ~ct avfiilabh’.
Such a solution would appear, indeed, to present serious
mat.hernatical difficuIties, even in the relatively simple
small-disturbance theory.

TLc work

FOR AERONAUTICS

described in the present report is a lo~icd
extension and application of ~he hodog;aph mrthoii of
Guderle.y and Frankl. To circumvent the lack of an analyt-
ical solution at.Xlach numbers greater than 1, it was proposed
in the prrsent study to solve the boundary-value prohlcm
by means of numerical techniques. In the application of
numerical methodis, the present work has much in common
with the investigations of Maccoll and Co”dd. TIN USC’of the
hodograph approach, however, climinatws the mwd for
successive approximations and brings about otht’r improvc-
menp in ease and rigor. Furthmnmre, through usc of the
similarity principles inhwvnt in the small-tlistllrl.)till(’e
theory, general resuItaapplicable Wuny thin wt!dgc can be
obtained on the basis of a relatively small number of spw!ific
calculations. In the present work, tlmsc results are used, in
particular, to study the prwsure dkt.rilmtion m-d drag of a
complete, doubly symmetrical double-wedgt’ profilv in the
range of flight hfac.h numbers from unity upwards. ‘TIw
report is divided into two major part% Part I cent.ai])s a
nonmatliefiaticaI description of the theoretical probhw tmd
a detailed dkcuaaion of the final rmults. This portion of the
report can” btl read without reference to prtrt II, whirh
explains the details of the mat.hematictdprocedures.

E3nce.the completion of the present cah-ndutions,cxpori- “
mental studks of the wedge problem htive been rrpmted by
Bryson in reference 8 and by Griffith in referencwg, Ccrtain
of the results which appmr in 13ryson’s report were also
given in preliminary form by IJiepmann and lilryson in
reference 10.

NOTATION

PRIMARY SYMBOL?

critical velocity (i. e., vel~city ut whirh thr
velocity of flow and the velocity of sound are
equal)

airfoil chord

(
drag p~.runit span

drag coefficient -- -- - )q& ,

generulizcd (hag codlcient N&acdl
()

.
pre&ure codikient ‘-~oE

genwdizcd pressure coefficient{[%J:I(’J
length of irrcgulm lattice int&.ls relat.ivr to

that of basic intlerval

function defining shape of profile

funct,iom defined along sonic line in hodograph
(Sewequation (23).)

intcgral defined by equation (56)
(i= 1,2,3) component integrals (See equation

(50) et seq.)
functions of e, j, and i, (SW equation (44).)
numerical constants (See equotions (24) an{l

(3~).)
Marll number
static pressure

dynunic pressure
(W)
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function defined by equation (41)
airfoil thickness
local speed of flow
~artesian coordinates

0dina’efunc’i0n{[(7+’’(:)T’’(:)l
absolute va]ue of ~ at left-han~ limit “of lattice
ratio of specific heats (1.4 for air)
Iwic Iattice interval
hodograph variabIe defined by equation (18)
Iocal inclination of flow reIative to x a..is
variahIe of integration (See equation (25).)
h81f-al*le of wedge
ordinates of upgoing and dom.go~m character-

istics at.~= O
hodograph variable (See equation (23).)

{

W-l
speed function

[(-t+ l)(wl”’ }

.% “

o

0,1,2, etc.

;
r
M*= 1
&=o

(-)
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transonic similarity parameter
{

.M.’– 1
[(’Y+ wdl’~ 1

fluid density
stream function
due of # at the point E (See equation (33).)

SIJBSCSIPTS

conditions in free stream
value at a prescribed Iattice point
conditions ~t critical speed
front portion of airfoil
rear portion of airfoil
vaIue at free-stream Mach number of 1
vaIue at &=O

SUPERSCRIPT

quantity in normalized form (See equation
(36)-)

PART I-GENERAL METHOD AND FINAL RESULTS

GENERAL ANALYTICAL METHOD

DESCRIPTIOX OF PLOW FIELD

It is convenient to begin by examining the nature of the
flow field which exists around a doubIy symmetrical, doubk-
wedge profile when the bow w~ve is detached. The com-
pIete double-wedge profile is considered here since the
determ”mationof the characteristic-aof this profle is the finaI
object of the present work The description and results
relative to the flow over the forward half of t.h~ profile, how-
ever, are applicable, within minor Imitations, to the flow owr
any tit e wedge which terminates in a sharp convex corner.
It will be assumed in all that follows that the fluid surround-
ing the profile is a perfect gas and that the effects of viscosity
and thermal conductivity are negligible.

Under these idealized conditions, the flow about a non-
Iifting doubk-wedge pro61e with a detached bow wave is
qualitatively as shown in figure 1. (Since the flow is sym-
metrical about the chord Iine, onIy the upper i~aIfof the Md
is shown.”) & indicated, the subsonic flow which exists

—-—
—---—

Shock waves
Sonic line

Expansion
Compression

Mach
[ines

FH;L’REI.—FIow about doubhwedge praflk with dekwlwi bow wave.

hhkl the detached wave is confined to a limited regibn
bounded by the wave, the sonic Iine, and the forward half of
the profile. The fluid wKlch enters this region is decelerated

2724ss45~

discontinuously from supersonic ta subsonic vebcity in
passing through the detached shock wave. Downstream of
the shock wave, the fluid is accelerated continuously, fit to .
the speed of sound at the wmic Iine and then to supersonic
speed beyond this line. As previously mentioned, the de-
tached wave begins normaI to the free stream at t-heaxis of
-etw (po~t -M and CWVH progressively do~stream.
Far from the airfoil, the slope of the wave t~ds asympto~
ically to the slope. of a fiee+t-ream Mach line. Since the
detached wave is curved, the flow behind the wave is, of
course, nonuniform. The sonic Iine, which forms the down-
stream bounda~ of the subsonic region, begins at the ridge
of the profiIe (~int B) and extends to some point E on the
shock wam Since the flow in the subsonic region is non-
uniform, the sanic Iine is curved. As can be demonstrated,
however, it must Ieave the ridge normal to the forward surface
of the protie.

Directly to the rear of the sonic Iine at the ridge, a super-
sonic expansion fan originates. ThM expansion fan tends, in
the immediate vicinity of the ridge, toward a simpIe PrandtI-
Meyer flow, in which the sonic line and the elementary
Mach waves would be straight Iines emanating radidy from
the corner. Since the sonic line in the present flow is curved,
however, the Mach waves of the expansion fan must be
curved as well, the curvature being in the forward direction.
By virtue of this forward curvature, certain of the expansion
waves meeLthe sonic line, whiIe others meet the outer portion
of the bow wal-e. One particular expansion wave BDE
meets both the sonic Iine and the bow wave at their common
point E. This particular wave maybe termed the “separat-
ing wave,” since it separates the expansion waves into two
classes: those which reach the sonic Iine and those which do
not. It is apparent that any smaII disturbance introduced
into the expansion fan forward of the separating wave BDE
will travel along a ,Mach wave to a point on the sonic tine.
From there it wiH spread throughout the subsonic region,
thereby Muencing the shape of the sonic line, and, hence,
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of the exp~neion fan itdf, TIM entire subsonic region and
the IWlted portion BDECB of the adjacent supersonic region
are thus interdependent and must be regmded for analytical
puqmsea as a singIe, bmmdcd transonic zone. A small dis-
turbance origimting in the purcIy supersonic region h the
rear of the separating wavo BDE cannot reach the sonic line
ad can have no cffect upon the flow in the aforementioned
transcnic zone.

The supersonic flow over t.hcrear of thu airfoil is diredy
influenced by conditions. in the transonic part of the field.
Analysis indicates that the elementary expansion waves
which reach the sonic line do not terminato there but are
rctkctwl as clemcmtlarycompression waves. These waves
are.again reflected as compression waves at the solid surface
of the airfoil. Af t,erthis last reflection, the elementary com-
pression wavea coalesce to form an oblique shock wave which
begins at the ridge. On thin sections this shock wave is veqy
weak and may be rcgarderl, for all practical purposes, as a
distrilmtwl compression. Rearward of the oblique wave
from thu ridge, the flow continues with supersonic velocity
to the trailing ecige, whe.ro t-hereis a second oblique shock
wnve of the type familiar from purely supersonic airfoil
problems.

METHOD OF ANALYSIS

To handle the premnt prcdhm analytically, the flow must
fmt be dctmnined in the tmnsonic zone bounded by the how
wave, the airfoil profile, and the.separating Mach wave. As
in all transcmic probloms, such determinantion involvm the
sohltion of a partiaI differential equation of mixed typ~,
that is, one which is elIiptic in the.subsonic region and hyper-
bolic in the adjoinhg supersonic region. The solution of an
equation of this type is troul.hsomc at best. In the present
problem, however, additionrd diflkultics arise. Fmt of all,
t.hcdiffercntia1 cquntion, beside being of the mixed type, is
also nordinear. Second, the location of two of the Ixmndarim
of the transonic zone —the bow wave and the separating
M~ch wmvc-is not known a primi but must be determined
as part of the solution. Third, the flow in the transonic zone,
having passed through the curved bow wave, is necessarily
rctationa].

The foregoing difficulties seriously complicate any attempt
to SO]VOthe problem in the physical p]ane, even when nu-
merical tcchniquesi are employed. The nordincarity of the
ditTerenfid equation, though it does not preclude a solution
by numerical methods, does grerttly increase tho amount of
numerical work over that which is ordinarily encountered
with a lincar equation. The lack of knowledge concerning
the Iocation of the boundaries of the transonic zone can be
overcome by resorting to a method of successive approxima-
tions, as in the work of Macccll and Codd (references 3 and
4). Such a procedure, however, entails considerably more
labor than would be required if the boundaries were known
at the outset.z The difbultics due to the fluid rotation can

: Mamlland C%dds!mpllfy both the fundemantal probIem end the @rloulatfvaprocedure
by fafrtng the sonic Unq brateadof the separating Meeb wave, anthe downstream hit of
tbe &on of eefordat[on. Thfs dfmfnatae the need for eonsfderfngtbe matbem.stlml afngu-
Irufty wbleb arlsti babfnd the aonfoIIne at the rfdga, bat reqnkea brreturn that samemnd!-
tion be speoifladalong the sorrloMmItself.Thfa reqrdremant Is met by emnmfna tkt the
srmmrfirtesand the ado Ifne are mutnaIly perpendhnler and thet the mnfa Ilne may be
representedby a snltable paiakde. The error intmdrred by thwe sDezfal a!mrmptione fe
not known, but would probably be mnsiderable for thfn wedgb! at Iow auperaenfcape@s.

be disposed of by simply assuming that tho retation is ncg
ligible. The inaccuracies introduced by this assumption are
undoubtedly small, except for thick wedges moving at rela-
tively high Mach numbers. Even with the rotation elimi-
nated fro~ the equations, however, the basic nonlinemity
stilI remains.

In addition to the theoretical diffkultics just discussed,
there.eziets a practical complication which is important from
the computational point of view. This complication arises
from the fact that any rigorous solution of t.htiproblcm must
be a function of three independent variables: the free-strcmn
Mach number M,, the thickness ratio t/c, and the ratio of
specific heats y. Thus, if a rigorous theory is used, a con-
siderable number of cases must IM calculated to obtuin an
adequate cross section of numerical results,

As, in the work of Guderley and Frankl (references 2 anil
5), the first step in the solution of the probletn is to trans-
form the flow from the physical plane to the hodograph
pkme. This affords an immediate simplification by previd-
ing a completely fixed set of boundaries for the transonic
zone. The bow wave, in pn.rticular,goes over inta a known
shock polar, while the separating Mach wave transforms
into one of the bed epicycloid which make up the chtirac-
tcristic net in the hodograph. The differential equation in
the hodograph variables is still of the.mixed typo, as WOU1(l
be expected in view of the transonic nnturc of the origimd
problem. The equation is also sti~l nonlinear if the fluid
rotation is inc.ludcd in the analysis. If the rotal.ion is ttrbi-
trarily neglected, however, the differential equation in the
hodograph becomes Iinrar, in contrast to (he previous sil-ua-
tion in tbo plysical coordinat,cs.a Since t-he fundamcnhds
of the prohlcm arc unchanged by the transformrtiion to the
hodograph, the complicntion still remains that any solution
must be a function of the three variables mentioned above.

The second major step in the ant-dysiais to introduce tlw
assumption of small disturbances. Specifically, it is rwmnwd
that the cnt.irc flow field, including the free stream, diffms
only slightly from a pmallrl flow at the critical speed ax.4
~ is well known, this small&turbance approxinuttion
brings about imporhmt simplifications in the maLhcmatics
of the problem. Fkst, the turns representing fluid rotation
turn out to bo of the same order us other tarms which are
neglected in t]]c amdysis, This means that the usc of the
linear differential equation in the hodograph is strictly
just.fied within the framwvork of the. approximrde theory.
Second, th differential equation itself, though still of mixed
type, takes on an ~pccially simplc form (tlm Tricomi
equation). This equation has been tho subject of cunsid-

$Frmkl’n tmlqueneedmwof, menttonedfn the Introductbn,Isbewd on the llneorequa-
tionendthus &norm the fluid mtathn. It wema unllkcly, howevw, that the fnduskm of
rotat[orreleffectswouldrdtertbamneluelonsof tbostudy.

~As dfamwedin severalrecentpapere(ace,forexnrrrpk,referezms11and L?), the thOorY
em deo be formuletwl frr terms of dHfmerreeerektive to the hwstrmnr spend 1’.. Thle
latter, k restrktfve formulation reveals clmrly the rcletIoneMpwhioh existsbetween the
trenwrrk arnnlkfisturbaneetheory rmdthe familkr Ifneer thcmy of subeenloor anpwsordc
flow. As slmwrrby Sprelter (SWpege 9 of rcfiwenw II), en a. eMIyefs wfff ytcId ruuke
identical to those of a V, enelyefe provided the AndIerlty frammcter and premureowtlkfcnt
fu the form= caseam teken w fn equations (1) and (7) Lwlow. If tble proeadurofafokwod,
the mmIteef th a. analyelsmeY even be expeekd to tmd torverd thoseof IInear thanry as
the frm-atrearoMach number !nonsaeesor decmesesfrom 1. (An armlytkal example of Just
thisbtWwforhasbwn gtvan by BrysonfrsappendixA ofrefereuee8.) It appoar&thesukre,
@t the% formrdetkm, when auftabIy uswl, afvra IWUM of VA&Uthonretfcd mlfd[ty OMU
would k antfdpated on the baafeof Its own rather rwtrfctiro undorlytngaseamrpt[on.
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erabIe mathematical study, beghming with the work of
Tricomi (reference 13). Third, the solution of the probIern
becomes a function of a singIe parameter which in-roIves
all three of the individual variables previously &mussed.
This is the so-caHed transonic similarity parameter &
which can be written

Mot- 1
f’=[(~+ 1) (t/c)]’~

(1)

This last simplifiration greatly reduces the amount of com-
putation required to in-restigate the eflects of changes in
the individual variables.

It may be remarked in passing that the assumption of
smaIl disturbances VW obviousIy be vio~ated near the stag-
nation point which exists at the Ieading edge of the profile.
A simihtr sit.uation is, of coume, encountered in the cIa.ssicaI
theory of thin airfoils at purely subsonic speeds. There
the into nsktency is know-n to be of little practical conse-
quence except in the immediate vicinity of the Ieading edge
itself. It is to be expected that the same result viiII prevail
in the locaIIy subsonic flovi encountered here.

A detailed account of the formulation and solution of
the houndary-va”[ueprobIem in the hodograph plane is given
in part 11 of the present report. Sufilce it here to say that
the boundaries and bounda~ cmditions are taken essentia-
lly as gi-ren by Guderley (reference 2), except. that the
supersonic portion of the transonic zone is replaced by an
quivaIent integral rehition vihich must. be satisfied every-
where along the sonic line. By this modification, which
involt-es no approximations beyond those aIready empIoyed,
the mathematical probIem is reduced to that of salving a
purely elliptic dtierential equation. This was found
essential to the numerical solution of the probIem. The
numerical soIution itself is carriedout in more or Iessstandard
fashion by meam of finitedillerence equations and relaxation
tedmiques.b

Once the solution for the front half of the airfoil is deter-
mined in the hodograph plane, the transformation back h
the physicaI plane is a simple matter. The pureIy super-
sonic, flow over the rear half is then constructed in the
physicaI plane by means of the method of characteristics as
specialized to the smaII<isturbance theory.

It w-N be noted that the solution of the problem in the
present manuer, though Iaborious because of the use of
numericaI techniques, requires no special assumptions
beyond those implicit in the differenti~ equations. In
particular, no restrictions are ncceemmy with regard to the
geometric shape of the shock wave or sonic Iine.

Although the transonic smalldisturbance theory was
{miginally formulated for the solution of problems of inked
flow, it is not confined in its applications to problercgj in
which such flow actuidly occurs. The theory ma-y stiII be
applied-in simple analytical form, in fact—in the com-
pletely supemnic regime, where the bo~ wave is attached
and the region of subsonic flow has disappeared. This is
accomplished by first. reducing the complete equations for
the obIique shock wave and the PrandtI-Jleyer ezpamsionto
$A9uoften the easewith rekratlon work, the nmnerfcal ealdstione made COnsi2ei-4111C

d~mnndsupon the skIUnndperwwremce of the computer. Speeid medft 4 due Mrs. Hehr
MendeIfor thesueeessfnleampletfrmof Ws ~ of thestudy.

appropriate forms invcdving the transonic similarity param-
eter (see, for example, the work of Tsien and Baron, reference
14) and then a.ppI-yingthese results as in the standard shock-
expansion method. This pracedure is applicable to &e
present airfoiI when &=WS=l.260, this being the condition,
to the order of accuracy of tbe smalldisturbance theory, for
art attached wave with not less than sonic fIow on the down-
stream sides (Consistent with the remarks in the intro-
duction, attachment of the wave itself takes place at the
somewhat lower value of &=3/(4) ~= 1.191.)

RESULTS AND DISCUSSION

Calculations have been carried out, according ta the
methods described in the preceding section, for four values
of the similarity parameter &; namely, 0.4S4, 0.703, 0.921,
and 1.05$3. These four cases were found wdlicient to bridge
the gap between the findings of GuderIey and Yoshihara at
Al@=l (.&=O) and the analytical resuH.swhich are ava.iIable
when the bow wave is attached and the flow is everywhere
supersonic (&> 1.!260). The complete results are giren in
figures 2 through 8 and are described in the foIIowing para-
graphs.

BOW WAVE AND SONIC LISE

The dimensionless ordinates y/c of any chosen Iine which
intersects the streamlines are given in the transonic small-
disturbance theory by an equation of the form-

.

‘(~+l’(’’c)’’’a(:)=y(:”O) (2)

where Y is a function of the dimensionIeasabscissa z/c and
the similarity parameter &. (For derivation of the transonic
similarity rules on which these and later equations are based,
see references 11, H, 15, 16, or 17.) The caIculateel shape
of the bow wave and sonic line is shown in figure 2 in the
form prescribed by the foregoing equation.

To facilitate the d~cussion, it vrill sometimes be con-
venient to Iook upon a generalized plot, such M that of
figure 2, as applying to fked vahws of tjc and ~. From t&
point of view, a decrease toward zero in the simihwity
parameter can be thought of as simply a &crease toward 1 in
the free-stream Xlach number. In figure 2 an appreciation
of physical propmt ions is furthw- achieved by divihg Y
by the numerical factor (0.24) ’/$ and plotting the resu.hsto
equal vertical and horizontal scales. Thus, for the specific con-
ditions of t/c=O.10 and 7=1.4 (air), the vertical scale reads
directly in values of y/c, and the figure provides as it stands a
geometrically correct. representation of the flow Md. The
correspondirqg vahws of M, are gi-ren by the upper tigure
along the shock wave. (The sonic velocity will first appear
in the flow field about the lo-percent-thick section at a
free-strenm \[ach number of apprmimateIy 1.219(&=l.260).
Detachment of the shock via-re will occur at the slightly
lower Mach number of 1.20S (&=l.191).)

~In the shock-mpm??onmethod it h esmmed that the~ E3Mom oneuenstmfght-
IInesegmentoftheMall ~. B.-use of fnternetfon eEects betwwn tha shnckwave
from the bow and the ezp!mdon fan horn the rtdg?, Lhfscondltfon fsnot compIefeIy foIfllM
until the Iiow behfnd the how wave Is somewlut greater t.hsnsonic, that h untff the valw
oft. &mnewhat abave 1S33 In cmnformfty wfth usualPmetiee, this mmpllmtkm k fgnnred
In the presentwork stnceIt 2sknown to hare ordys negIfglble InfCueru%npon Oie eompufed
chamcterlsticaof tie afrfolf.
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XIC.3. 16__~ __X/c = 3.23
Y/(0.24)lfi=18,30 ]( Y/(0.24}i/3=i8.30

I
I* I

A
* +

7 II 1 I
M. far //c= 0.10

and y=l.4 ‘1

\
A

1/
1,

-.

6
A# -1 /

‘0 “ w--~
1

1

I 1

I /

/ / i
I

5 - I
/ I

i 1!{t

4 #
i

/ I

/ I

3 —- -

2 —–

I

0
-2 -1 0-

-— --
I 2—

x/c

[:IGURE 2.-She.pe of tmw wave md gonfcl[n~.

ThQ dashed outline of the.airfoil which appems in figure 2
is LObe regarded as a diagrammatic representation only.
In a similarity pIot of this kind, the profile mushbe regarded,
proporly speaking, as coinciding with tho horizontal axis.
(For a more complete discussion of this point see page 29 of
reference 18.) The dashed profile in figure 2 is included only
as an aid in orienting the reader. .

It will be noted that in each case in figure 2 the shock
wave and sonic line as calculated do not meet at a common
point. This discrepancy appears in the course of the trans-
formation from the hodograph to the physical plane; it is
primarily a reflection of the fact that a solution of the
sysLemof finite-difference c.quations in the hodograph is not
an exact solution of the boundary-value problem for the
original partial different&1 equation. This so-called “ trun-
cation error” can, in principle, be made as smalI as desired
by progressively decreasing the mesh sizo in the hodograph.
In the present work this procedure has been carried in each
case to the point where increased refinement caused onIy an

insignificant change in the pmssurc distribution or over-d
drag. Because of the nature of the hodograph transforma-
tion, however, the details of the accompanying flow field arc
subject to somewhat greater error, part.icularIy with regard
to the over-alI heighLof the subsonic region. As implied by
the size of” the gap bctwwm tho shock wavo and sonic line,
the absoIute magnitude of this error increases as f, dccrcascs,
though the percentage error in terms of the height of Lhe
subsonic region is nearly constant. The actuql magnitude
of the truncation error is in all cases certaifdy less than the
errors caused by the basic Lheorctical assumption of small
disturbances.

It is seen in figure 2 thut in each mse the cakxdated sonic
line begins at the rnidchord point at right angles to the
horizontal axis, This result is consistent, to the accuracy
of the small-disturbance theory, with the known fact Lhat
the sonic line given by any rigorous treahncnt would lCUVC
the ridge normal to the forward surface of tho profilo. As iL
leaves we airfoil, the sonic lino curves at firsLrather sharply
toward the rear, The initial curvature can, in fact, I.w
shown tg bo infinite. A short distance from the airfoil the
rearward trend is reversed, with tho result that tho sonic
line has a predominately forwmd curvature over most of its
Iength. The flow across most of the sonic IiIMin thu present.-
problem is appmcntIy analogous to the accelerating tran-
sonic flow through a continuous-walled, convwging-divcrg-
ing nozzle, where the sonic line is known Lohave a consistently
forward curv~turc. The rearward curvature which is
evident C1OSCto the airfoil is only a Iocalized eflcct caused
by the presence of the sharp corner at the ridge.

The rapidiLy with which the subsonic region expands
ve.rtical~” with reduction in the free-stream hlach number
is strik~. For the airfoil of 10-percent thickness ratio, for
example, thu semihcight of tbti subsonic region in figure 1
grows f~m approximatdy 2.4 chord lengths at ~f,= 1.187
to approximately 18.3 chord lengths at Me= 1.090, The
height if the subsonic region (and the distance of tbc shock
wave ahead of the airfoil) would, of course, tend to infinity
as the Mach number approached still cIoser h unity. These
results imply that the tip effccts aro likeIy to be considcmblc
on finite-span wings at free-stream Mach numbers close to 1.

According to the. tnmsonic similmity rules, the sped of
flow at any point in tho generalized flow field is determined
by the Iocal value of a dimensionkss speed function & which
can be written

—
~=[(T::) (t;c)]~’ (3)

where M is the locaI value of the Mach number. (TIMIt.ran-
sonic similarity parameter is thus merely tlw special value
of ~.e speed function which applies at points in the free
str&m.) As a matter of interest, contours of constant
speed function t in the region between thu shock wave and
scnio line have beeu deLermincd for the case of f.=0.921.
These results are shown in figure 3. By virtue of equation
(3), the contcmrs of constant ~ may be interpreted, for fixed
values of tic and y, as contours of constant hfach nwnbcr.
They may also be regarded, to the order of accuracy of the
transonic small-disturbance theory, as contours of const.ant
veIocity, pressure, density, and temperature. It will be
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noted that certain of the contours, in common with the
sonic line, fail to meet the shock wave. This ia again a
reelection of errors inherent in the finitediRerence solution.

I
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CHOIIDWISE DISTRIBUTION OF BIACH SUMBEE AND PRESSURE

.4tpoints on the surface of the airfoil, the speed function
~ is related to the similarity parameter g, by an equation of
the form

The crdc.ulated -raIues of f at the surface of the airfoiI are
shown in tigure4 for the four vaIues of the similarity param-
eter. ho included in the figure are results for f,=O as
obtained from the prev-im.dy cited work of Guderley and
l-oshihma (reference 7). In line with the earIier interpreta-
tion, the curves of iigure 4 may be looked upon here as
representing the chordwise distribution of Mach number for
fixed values of t/c and ~ but different values of J1..

FIGURE4.-Chordwke JkCbution ofm MncUon @ surfawofdrfd

All of the distribution c.ur-resof figure 4 hare the same
generaI sh~pe. In each case, for exampIe, the e~cuIated
Mach number at the lead~ edge has an intlnite negative
-due. This physically impossible result, which is charac-
teristic of smaIldist-urbance thwmiea in general, represents
the stagnation condition which must prevafi in the real sub-
scmic flow at the Ieadirg edge. Rearward from the Ieading
edge, the IIach number in each case risesmore or less r&pidly
to the prescribed due of unity on th~ forward side of the
ridge. Turning the corner at the ridge, the flow expands
discontinuously to a supersonic X[ach number which, for
given values of t/c and ~, is independent of conditions in the
free stream. Over the rear half of the airfoiI, the Mach
number decreases slightly as a resilt of the compression
waves reflected from the sonic line (see Q. 1). In general,
for an airfoil of ‘fired thickness ratio, increasing the free-
stream lIach number from unity brings about an increase
in the average locaI \Iach number over both the front and
rear surfaces of the profile.

The nature of thisIatter variation is illustrated more clearly
in @re 5, which is a cross plot of &-iersus & for the 25- and
75-percent c.hordwise stations. The shor~ }-erticd lines
labeled S at &=1.260 denote the point at which the tram
sonic small-disturbance theory predicts an attached bow
viave with uniform sonic flow o-rer the forward half of the
profile. Results at this point and at. all po”mts to the right
of S can be determined analytically as expIainerl earlier in
the text. lt is apparent from figure 5 that the values gken
by the present numericaI work satisfactorily bri~e the gap
which would otherwise exist between the analyt ioal results
at either side.
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As can be seen from&e 5, the change in Iocal conditions
with change in free-stream Nach number is sl.ighfifor a
considerabh distance away tiom a free-stream Mach num-
ber of 1. The curves of this @me have, in fath, been drawn
with a horizonttd tangent at &=O. This is in accord wit-h
Guderley’s recent amdytical study of two-dimensional flon-s
-with a free-stream Mach number cIose to 1 (reference 19).
Guderley’s remdts indicate that just at the sonic flight speed
the 10CSIMach number at any point on an arbitrary tmo-
dimensional profle is stationary with respect to variations
in the free-stream Mach number, that is,

dil$

(–)dlklo .L@=o
(5)

In terms of the present variables (see equations (1) and (3))
this requires that

(6)

The same results were anticipated by Liepma.nn and Bryson
on the basis of the physical considerations presented in
reference 10.

The pressure coefficient C,= (p-pJ/qo is given in the
transonic small-disturbance theo~ by the equation

(7+1) ’1’
(qcyfs ~p = –z(~–g,) (7)

At points on the surface of the airfoil, equation (4] applies
for f, so that equation (7) there has the form

(8)

where 6P is a generalized prwsure co-ticient which depends
ody on z/c and go. The vilues of amfor the double-wedge
section, as calcdated by means of equation (7), are show-nin
&u.re 6. The curves here are essentially the same as t-he
curves of f in figure 4, except that they are inverted and
shifted vertically by an amount Tvhichcliflersfor each curve.
It can be seen from this figure that as the h-ee-stream Mach
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number increases abo~e 1 the pressure distribution tends
to-ward the well-kuom supersonic type of distribution in
which the pressure is uniform over each surface of the profile.

PRESSURE DRAG

ht the ordinates of a general profile be represented by the
equation y/c= (f/c) f(z~c). With the aid of equation (8),
the preesure-drag coefficient can then be written in the
generalized form

(-Y+w“
(tJc)’t’“=$‘,(~’”)~(:)d(:)=’’(’o‘“

where j’ (x/c) is the derivative of f(x/c) viith respect to its
argument and the integration is performed around the profile
in the clockwise direction. In the specific case of the double-
redge profle, the ordinates of the fronfi vredge are given bF
y/c= * (t/c) (ZIG). The portion of the genera.Iized c&
coefficient cantributed by this haIf of the profile is thus

(lOa)

where, because of symmetry, the integration need be per-
formed over only the upper surface. For the rear wedge
the ordinates are given by y/c=+ (t/c) (1—x/c), and the
correspond@ portion of the generahzed drag coefEcient is
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In the present study the integrals in equations (10) were
evaluated by mechanical integration of the pressuredistribu-
tion curves of figure 6. Ln the case of & a smd, analyti-

{ctilly dehmnined allowance w-asincluded or the effect of the
singdarity at the leading edge. The fin-d results are shown
in figure 7. ThtI drag coefficient of the complete airfoil was
obtained, of course, by adding the drag coefficients for the
front and rear wedges.

The rcwdts of figure 7 indicate that rtta H~ht Mach num-
ber of 1 approximately two-thirds of the drag of the section
is contributed by the rear wedge. .k the Mach number

condition and then also decreases toward zero. The details
of the maximum are, however, not-dear from Trilhg’s work.

& shown by Liepmann and Bryson (reference 10), the
slope which the cm-res of Egure 7 should have at the vertical
asis can be determined from the previous results regardii
the behavior of the locaI Mach number at the sonic ffight
condition. For example, taking the derivative of equation
(lOa) with respect to &, one can write for the front wedge

(11)

6
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increases from 1, the drag coefficient of this portion of the
profiIe decreases continuously. At the same time, the drag
coefficient of the front wedge first increases until it is con-
siderably above that of the rear half, after which itt also
decreases. At a sufficiently high free-stream Mach number,
the drag coefficient of each half of the airfoil is essentially the
same. As a rewdt of tie dithrence in the drag variation of
the two halves, the drag coe5cient of the complete profile
shows little variation for some distance above a Mach nunl-
hrr of 1. As the shock wave attaches to the leading edge,
however, and the local flow becomes eve~where supersonic,
the total drag coefficient drops markedy. Far into the
supersonic regime th~ variation is a.min less rapid.

The curve for thufront wedge in figure 7 has been continued
into the subsonic range of flight speeds (&<O) b-y the
antilytical w-orkof CoIe (reference !20). The continued curve
decreases monotonically toward zero as the due of & is
reduced. The continuation of the cwe for the rear wedge
has been accomphshed by Trill~w (reference 21). This
curve apparently reaches a masimum at some subsonic flight .

I It follows from equation [7) that

(%),..O=-’[(%),..O-ll

I and hence, by titue of equation (6), that

d~p
(–)di. F.-o

=2

I Substitution of this value into equation (11) leads to the
I final result

(12a)

This is the resuIGgiven pretiousIy by Liepmann and Brj-son.
The analogous reIation for the rear wedge, obtained by
proceeding from equation (lOb), is

(12b)
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The curves for the front and rear wedges in figure 7 thus
have equal but opposite slopes where they meet the vert.icaI
axis, It folIows that the curve for the compIete profile has
zeru slope at the same point, that is, (d&/d&JE~.,=O.

lt will be noted that figure 7 also includes curves obLained
from the standard linear theory. That such resuIts can be
included in a transonic similarity plot of this kind has been
shown by several writers (sBe, for wample, reference 22).
In the present case, the drag coefficient of the complete
profile as given by the linear thmry is (see page 154 of
reference 23)

(t/c)’

“=4 (M:- 1)’/?
(13)

This can be written in terms of the transonic simihwity
varialh as

#+ 1)’/’ 4
(t/c)’/’ C*=P

(14)

The front, and rear of the profle ermhcontribute Mf of the
drag in the linear theory, so that

‘~r=%=+s

The dashed curves of figure 7 have been drawn in accordmcc
with Lheserelations.

For the rear half of the airfoiI, the two theories illustrated
in figure 7 are in reasonable agreement down to weIl within
the regime of transonic flow. This result might not be
anticipuLcd,since the linear theory is bawd on the assumption
of supersonic flow throughout the flow field. It is probably
associated in some way with the fact that the loctd flow
over the entire rear ldf of the airfoil remains supersonic
(and nesarIyuniform) even after the flow over the front has
become subsonic. For the front wedge, the results of the
two theories diverge markedly oven before the transcnic
regime is reached. The same is true of the curves for tho
oompleto profile. Within the transonic regime itself, the
two theories give radicalIy different resuhs for both the front
wedge and the complek profile. Near &=O the two sets
of results for L~e rear wedge are also completely different.
This basic disagreement is a reflection of the fact that the
fimwr theory is inherently incapable of dealhg with problems
involving mixed flows.

To afford some idea of numerical magnitudes for a repre-
sent,aLive specific case, the curves of figure 7 have been
re.plotted in figure 8 for t/c= O.0787and 7=1.4. This value
of t/c is the vahm which would apply to a compIcte profile
having the same half-angle at the leading edge (4%0) m the
thinnest wedge tested by Elepmann and Bryson (references
8 rmd 10)! Also included in the present figure are partial
curves calculated according to the standard shock-expansion
method (see, for cxampIe, reference 24). This method,
which is based on a ste.pwise application of the complete
equations for an oblique shock wave and a Prandtl-Meyer

~Inanearnerau?ountof thfs work (SWfootnote 1), a multlpllcftyof em-m wondrawnfor
eechpartof the prwfik on the beefsof the traneordosmdldfsturbanm theory. TM wasdone
by doe exprwasbnafor the sSmf18rltYmmrneterand Presdrm owtl%isnt different from those
of equelloas (1) end (7). In rlsw of the snbwquent developrnenti outlined tn footnote 4,
such cxrmpllmtfonsnow ap~ar to M of feswmct sfgnifimnee.
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expansion, applies otdy in the range in which thr shock-wave
equations predict an Rtt.achedwave with noL]ess Lhrmsonic
velocity over the front Mf of the profilr. Exccp t for n
snd mror in the drag of the rem hdf near the low end of
this range (see footnote 6), the shock-expansion method
provides the exact inviscid solution for tho doubIe-wcdgo
profile.

Additional information of an exact n~ture can be includrd
in figure 8 with reference to the raLeof chtmge of the drag
coefficient at. t.hc.sonic flight qwcd. k previously implied,
the amdytical results of Guderley regarding flows with a
frmstream Mach number close to I (refw-encc ]9) am not
limited by the assumptions of the transonic sfnalI-disturbance
theory. (The same can also be said of the physical mgu-
ments given by Liepmann and Bryson in referrmcc 10,)
This means LhaLthe result of equation (5)—name?ly, thot
(dM/dhfJMo- ,= O—may be regarded as an exact rmtdt
and mtiy be used to obtain exar’ ~4at.ionsfor the slope of the
drag curves at a.free-stream lfach number of I (see appmdix
for details). The final equations, which arc the only items
of importance here, are as follows:

For the front wedge

dc~~

(–) =~(~)-~+ (W,.* (16a)d.ifo M*-I 7+1 c
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For the rear wedge

For the complete profiIe

dc~
()

—— –~ (c&..,
..d.lfo. Me-I= 7+1

(16c)

The short slanted dashes which appear on the line M.= 1
in the various parb of figure 8 have beeu drawn in accord-
ance with the9e rdations. An exact curve for. the transonic
ra~mewould cross the Iine M,= 1 with a slope conforming
with these dashs and fair smoothly inti the shock-expansion
results at some point sIightly to the right of the pertinent
point S. The ordinate at M,=l wouId not, of course, be
necessarily identicaI with that computed from the small-
disturbance theory.

It is of interest to compare equations (16) with the
corresponding equations given by the smaIIdisturbance
theory. These can be found by differentiation of equations
(10) and abdication of the results of equations (12). The
fintil expr&;ons are as follows:

For the front wedge

dc.f’(–) ()4t
d.lzo Jr.-l=- ; (

For the rear wedge

dcdr
() –()

4f—.
.d.ll; MO-l= ‘7+1 ~

(:

7a)

7b)

For the complete profile

dc.i
()

.—
.dMe M@-l=O

(17C)

Equations (17a) and (17b) are the same as equations (16a)
and (16b) insofar as the terms proportional to tlc are con-
ea-ned. These terms are a rdt (see appendis) of a rela-
tive variation between the static pressure at the sonic point
and the reference static pressure in the free stream. They
have the same magnitude but opposite sign for the front
and rear wedges. They thus do not appear in the fLuaI
equations for the complete profile. Equations (17) ditTer
from the exact equations (16) by their failure in every case
to include a negat-i~”eterm proportional to the drag coefficient.
This term appea~ in equations (16) as an effect (see appen-
dix) of a relative variation between the dynamic pressures
in the free stream and at the sonic point. This effect is of a
higher order than those which the smaI&disturbance theory
incIudes. Because of the presence of this higher order effect,
the exact theoretical curve for the compIete profile, in par-

ticular, must have a slightly negative slope at a free-stream
Mach number of 1?

CONCLUDING REMARKS

The results of the present numerical analysk show the
salient features of the twodimensional inviscid flow over a
thin, doubly symmetriod, doubIe-wedge profle in the range
of supersonic flight speeds in which the bow wave is detached.
The most important findings can be summarized as folIows:

1. The vertical extcmt of the subsonic region behind the
detached wave is large even v&n the w-ave is onIy a relati~ely

small distance removed from the Ieading edge. This impIies
that the tip effects may be Iarge on finite-span wings when
the bow wave is detached.

2. The IocaI Mach number .31at a point on the surface of
the profile increases monotonically as the free-stream Mae-h
number M, increases from 1. The increase in .31 k at first
very slight for a comiderable increment away from the
sonic ilight condition. This confirms previous findings that
the IocaI Mach number has a stationary vaIue at 31,=1
and shows that these findings provide a good working ap-
pro.xirnationeven at Mach numbers a short distance removed
from 1. When considered in terms of the pressure coefficient
on the surface of the airfoil, the resultsshow how the tranaonic
pressure distribution tends, as the fright Mach number in-
creases, toward the pureIy supemonic type of distribution
known to exist in the upper portion of the speed range.

3. As the free-stream Mach number increases from 1, the
press.uredrag coefficient of the front wedge increases until it
reaches a maximum at a flight speed somewhat beIow that
for which the bow wave attaches to the leading edge. lt
then decreases, the rate of the decrease being at first rapid
in the vicinity of bow-wave attachment and then I&s rapid
in the range of pureIy supersonic flow. The d~~ coefEcient
of the rear wedge decreases cent inuously o~er the entire
supersonic riqe of flight speeds. Because of the ditlerences
in the drag variation for the two halves, the drag ,coefficient
of the complete protlle varies relat.iveIy aIightly near the
sonic flight speed, decreases rapidly in the vicinity of bow-
vrave attachment, and then decreases at a progressively less
rapid rate in the range of purely supersonic flow.

In applying the foregoing resuhs, it shouId be remembered
that the theory assumes an inviscid fluid and an airfoiI of
smaII thickness and infinite span. Since the effects of finite
span, in particular, w-Wbe to reduce the ~~ at transonic
speeds, the present resultsshould be looked upon as providing
an approximate upper bound for the inviscid preemmedrag
of a three-dimeD9iona.Iwing. In fact, untiI some knowkdge
is obtained regarding the effects of finite span and fluid
viscosity, it is doubtful if more accurate Wodimensional,
i.wriscideaIcuIations for thin double-wedge profiks would be
worth the troubIe from an engineering point of view. In
the present state of theoretticaIdevelopment, knowkdge of
these effects wiII probably have to come from experiment.

*Thfs fert was orfgfnslk pointed out to tbe authorsby GottCriedGuderIey.

X2483-64 --W
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PART II—DETAILS OF ANALYSIS

The present part of the report is concerned with the details
of th~ numerical analysis. The plan of this part is brieffy as
folIows: In the. first section, thd basic probIem of thu finite.
wedge with detached bow wave is stated as a boundary-value
problem for the transonic small-disturbance equation in the
hodograph phme. Except for the introduction of a boundary
condition along the sonic line to replace conditions previously
prescribed in the supemonic portion of the hodograph, this
material foIJows the lines established by Frankl (reference 5]
and GuderIey (reference 2). It is recounted hure primarily
for the sake of complctwms. In the second section, ttho
Lwundary-vahmproMem in the hodograph i9 rcduccd to a sys-

tem of finiti-diflue.nce equabions, the solution of which is then

obtained ~Y rehmatiemtechniques. This portion of the work,
which constitutes tho main contribution of the present part
of the report, is discussed in some detaiI, since it is anticipated
that the methods and equations which are presented will be
usefuI in the solution of other problems involving detached
shock waves. The third section describes the transformation
of the hodograph so~utioufor the finite wedge back into the
physical plane, The fourth section is concerned with the
characteristics construction used to obtain the purely super-
sonic flow over the rear of tho doubk-wedge profile, and the
final section contaius a few remarks on the accuracy of the
solution.e

STATEMENT OF BOUNDARY-VALUE PROBLEM IN
HODOGRAPH PLANE

COMPLETE HODOGRAPH

A description of the flow in the physical plane has bwm
given in part I, with figure 1 as the basis for the discussion.
For convenience, this figure is reproduced hem (with minor
changes) as figure 9. The corresponding hodograph of the
flow about the front wedge is shown in figure 10. The

— Shock waves
—— WIG line(K@)
—————Streamline

}
———— Espaneion Mach

CompressIan lines

F

—

FIGURE9.–Flow in phgaicsl pleme.

FIaun 1O.—FIOWsbaut front wedge fo hodogmph plane.

sThe antborssm Jndebtedh WfIlfarn A. Mersmw of the Ames Iabemtory for ~Etfons
feadfns to wrtahs of the mutbemstfcal pmwdnms usedtn the ansfysfs,

hodograph variables arc the dimensionless speed V~a* tmd
the inclination of flow 6, whore 17is the local speed of flow,
ax is the critical speed, and @ is measured relative to Lhe z

ati .

The picture in the upper Mf of the hodograph plane can
be described briefly as foIIows: The pmt of the shock wuvo
which borders on the subsonic region in thu physical piano
appears in the hodograph as the subsonic porLion AE of n
shock polar. The shapo and position of the shock polar
are determined by the dimensionless free-stream velocity
V& (or, whaL is cquivakmt, by the free-st.ream hfach
number M.) and by the ratio of specific hints 7,1° The
portion of the central streamline from the normal pnrt of the
shock wave w the stagnation point at the nose of the wcxlge
maps into the portion AO of the horizontal axis in tho
hodograph. The image of tlw wedge itself is given by a

radial line inclined at the wedge angla OWand extmding from
the origin O to Lhepoint B on the critical circle (V/ax= 1).
The shoulder of the wedge, which produrcs an expansion fau
of a locally Prandtl-Meyer typo in the physical plane, appears
in the hodograph as a portion of the downgoing characteristic
(epicycloid) starting at B. The last hfach Iinc from tlm
shoulder h the sonic line (twrned the separating 31ach line
in part I) appear-eas a portion of the upgoing c.htiractm%qt.ic
which begins at the itlLwsccLhn E of the shock polar and
critical circle. Point G, the point of intersection of thu
epicycloid from B and E, fixes W extent of the downgoing
characteristic which must bc considered in dctwnining tho
solution in the hodograph. A typiwd streamline in Lhc
hodograph plane is shown by the Iinc WI).

To obtain a solut.ionof Lhee.lotachwl-waveproblem in the
hodograph, a boundary-value problcm for the e,liffercnt.ial
equations of gas dynamics must be solved within the region
AOBGEA. If tlw stream function # is taken M the un-
known, the pertinent bounclary conditions arc as follows:

1. The value of # is consLant along the basic strctunline
AOBG.

2. The streamlines (i. c., the lines of constant ~) leave the
shock pohw with a direction which is a known function of
location on the polar.

3. The incrcmcnt in # over the portion AE of the shock
polar has u prescribed value different from zero.
The reason for the first coudit.ion is obvious. The second
condition is a conscqucncc of thu requirement that.,at every
point on the shock polar, the dire.ctionof the shock wave as
computed from the solution for # must be compatible with
the direction given by the equations for an oblique shock
wave in a uniform stream. The third condition].prcwmts #
from being simply a consLantthroughout Lhchodogrnph and,
in effect, fixes the scalo of the flow fielclin the physical plane,
It will be noted that no condition is prescribed along tho
boundary EG in the hodograph. Frankl hm proved (refer-
ence 5) that the solution determined by the foregoing
boundary conditions is unique.

MThe~~~~tl~~~hl~~ Pertfinths~anbefoundinthe~~~kOfF~kl (~f~~~ ~).
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SPECIALIZATION- TO SMALL DISTUEBKSCES

Original boundary-value problem. —A has been shown by
Guderley (reference 2), the equations of the boundary-value
probIem in the lmdograph me considerably simplified when
restriction is made to the neighborhood of the critical speed.
To this end, the quantity q is introduced according to the
relation

T-–a.
~=(7+ l)”a -y-- (18)

*

and q and the stream angle o are assumed suflkiently small
that only their Iowest powers need be retained in the analysis.
This means, in effect, that. the right-hand portion of the
previous hodogmph (incIuding bhe shock polar itsdf) is
made to shrink down to the vicinity of the point H, which
defines the intersection of the criticaI circle and the hori-
zontal axis.

When t.h~foregoing procedure is carried out and the limit-
ing process is counteract.ed by a suitable erdmgement of
scale, the situation in the smaLldisturbance hodograph (i. e.,
in the q,8 plam:~ appears as in figure 11. Here the critical

e

o- 8=8W B

6

e’
G

D,/

I --
E

F

I

I
o- A :1-1

-% I

speed corresponds to the vertical asis q=O. The equation
for the upper half of the shock poIar in the simplified hodo-
graph bas the form

(19)

where q. is the value of q corresponding to the free-stream
velocity I-.}l By virtue of the limiting process, the stag-
nation point at O has moved, in the present system of axes,
infinitely far to the left. As a result, the part AO of the
horizontal a..ia (19=0) extends now from q= —q. to q= — w.
The image OB of the wedge ia similarly represented by the
horizontal line 8=13M,qsO. The characteriatits, which com-
plete the boundaries of the field, have the simpIe form

e=const. k :7312

on the basis of the usuaI assumptions regarding flow

(20)

near
the criticaI speed, the &tFerential‘~uation–for # ~educes, in
the present simplified hodograph, to the form

+W–ll!ho= o (21)

IIT&der!vnticmc.fthfs wd tbe other equatfonz for the 21mPUtledMdcwrzph k @ven by
Guderiey h referenee5.

This is the mi..ed elliptic-h~perbolic equation studied by
Tricomi in reference 13. The boundary conditions aIong the
centraI streamline require that @ be constant-say O—on
AO aud OBG and that @O as ~+- m) for 0s6s13M. On
the upper half of the shock polar, the boundary conditions
require that the lines of constant ~ must have the slope

(22a)

On a line of constant ~, dtl/dqcan be replaced by –~,j$~ so
that the foregoing condition can ako be written

The fiuaI boundary condition requires that # must have
some given vaIue #E#0 at the point E. Siice the coordi-
nate of the flow field will uMrnateIy be tqrwsed in terms”
of a characteristic dimension of the wedge, the actua.Ivalue
assigned to #E is pWehJ a matter of Mmvenience. h before,
no boundary condition is specified along the characteristic
EG.

Elimination of the supersonic region.-The foregoing is the
bounda~-vaIue problem for the finite wedge ns formu[atwl
by Guderley. It -was the originaI intention in the present
work to obtain a numericaI scdution of this problem on the
basis of the boundaries and boundary conditions which have
been described. Efforts in this direction faikd, however,
because of difhmlties in obtaimng convergence of the relaxa-
tion process in the supersonic portion BGE of the Imdo-
graph~z Similar diffkdt ieahave been reported in references
25 and 26 with regard to reIaxat.ion calctdations of the
transonic flow through a convergingdiverging nozzIe. The
reasons for the ditlkmlty in the present case are not apparent.
Fundamental questions would appear to be involved con-
cerning the stabiIity and convergence of the t3nite-dMerence
scheme for the Tric=omiequation in the hyperbolic domain.
A study of these matters, sidar perhaps to that reported
for the ~-ave equation in reference 27, may be a prerequisite
to numerical soIutions of m.imd-flow probIerns in the generaI
case. In the presenh example, however, the difficulty can
be circumvented by modifying the boundary-value problem
so as to eliminate the supersonic region from e.xpIirit con-
sideration.

The elimination of the supersonic region depends on a
formuIa given by Tricomi (reference 13, equation (2.19))
which relates the behavior of ~ on the vertical axis to its
behavior on a characteristic. In the present case, in which
x is identically zero on the characteristic BG, this formula
reduces to an integral reIat.ionbetween @ and #, at points
on the sonic line. This relation has the form

(23)

where
A=6.–6

F(k)=#(o,e)

@(A)= #q(o,6)
u&wml procedures werz crted b the zuperzonte@q m.fng kath s square lattim and

a Iattica foIIowing the elrarnderktke. AI1 wem mznccesfuL
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and k’ is a variable of integration (see fig. 12). The numeri-
cal ccmstont kl is given by

(24a)

where 1’(1/3) is the gamma function of the argument 1/3.

B

0-
/

/
0

E

FIGURE12.—HodographIn vkfnlty of sonicline.

J?or the accuracy required in the lat~r numerical work,

the Yalue of this constant may be taken as

kl=l,o13 (24b)

Satisfying equation (23) everywhere on the sonic line from
B to E is completdy equivalent to satisfying the condition
#=0 on the dow-ngoing characteristic from B to G,

For the present application, it is convenient to invert
equation (23), which can be done by means of Abel’s formuIa.
This gives (see reference 28, p. 229)

fid
f3(A)=—— — f

h F’(A’) ~h,
2rkl d~ , 0 (k—A’)2f8

The differentiation indicated on the right is readily accom-
plished by fimt transforming the integral to one with Exetl
limits by means of the substitution k’=t~. The rcsuIt is,
aftw reverting to the originaI notation,

,r

[s
X ‘(k’) d~,+

r
k ~’~A(h’)

‘$(~)= –~: + o (~” ,0 (~_~/)m d~’ 1

Transforming the first integral through integration by parts
and noting tht F(O)= O, one obtains finally

& h F’,(X’)
G(h)=–—

r2mk, , 0 (A– A’)f/8
dh’

This can be written in the V,6 notatiou as

r
JoW,e’)W?O+2::,,m(#_fl)m~fl’=o—. (25)

where d’= d.— k’ denotos the variable of integration. As
with equation (23), satisfaction of equation (25) everywhere
on the sonic hne between B and E insures that ~ is zmo
everywhere on the characteristic from B to G. By regarding
equation (25) as a boundary condition along BE, the region
of scdution of the partial differential equation (21) can bc
wmfinod to the purely subsonic portion of the hodograph
(q S O).. Relaxation methods can be used to solve the
resuIting elliptic probIem without essential difficulty.

Equationsin normalized form.—To carry out the numerical
calculations, it is cormenient to normalize the equations of
the bounda~-value problem by means of the transformation

(26)

This is equivalent to introducing the rules for transcmic
sindarity (see for marnple, references 2, 15, and 29). The
particular form of transformation chosen hem has WI advan-
tage for the present work of providing a unique shock polar
with conwnientIy Iocated horizontal and vmtic.al intercepts.

With the foregoing substitution, the differential equation
(21] takes on the following form in the ii,~ plane:

/ . I
1“
I

o- +=0 A
-1 1-

-v
FIGURE lS.—Boundwy.value problem In 6,; phc,

Consistent with the elimination of the supemcmicregion, t-he
boundary-value problem can now be summarized as foIIows
(see fig. 13):

1. On the basic streamline AOB:

*=O for ;=0, ijs-1 (28)

#=Ofor ~=;u, ij~O (29)

#+Oforti+-w,OS~Stlu (30)

2. On the shock poIar AE:

for

l+71j —
-—-~ll+f ~=o

“ 3+5n

(31)
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3. OU the sonic line BE:

for

31/2
~2=~21s=~1 (32)

4. At the point E:

x=#~ (arbitrary constant-#0) for ~=0, j = I (33)

It is apparent from the preceding equations that a solution
of the problem -willdepend on only the singIeparameter ~mj
which ddrws the position of the upper bounda~ in the i, 0
plane. This parameter is directly related ta the tmnsonic
simihu-it:vparameter & which was used in the presentation
of the resulta in part 1 (see equation (l)). The rektion is
easily derived with the aid of equations (18) and (26) plus
the equation

M’- 1 T’ ~— . . .
L,T+l) a*

(34)

which relates the speed and Mach number in the small-
disturbance theory. (It is also necessary to note that, t.athe
approximation of the theory, 8Wis equal to t~c.) The finaI
result ia

Olia
(35)

SOLUTION OF BOUNDARY-VALUE PROBLEM IN
HODOGIIAPH PLANE

‘Me solution of the bounda~-value probIem in the ij,~
plane is obtained in two steps, according to established pro-
cedures for the numerical treatment of partial di&rent.ial
equations. (For introductory articIea, see references 30, 31,
and 32. For tin extendd discussion, see reference 33.) In
the firat step, the domain under consideration is covered by
Hsquare Iattice, and a finite-difference approximation to the
differential equation or boundary condition is writ-ten for
each lattice point. The boundary-value probIem for the
partiaI di.f7erentialequation is thus reduced to a problem in
salving a large number of simultaneous algebraic equations.
Solution of the latter problem by relaxation methods is the
second step.

REDMYIION TO FINITE-DIFFERENCE EQUATIOSS

The arrangement of a typical finite-difference lattice in
the ij,i plane is shown in figure 14. The basic lattice inter-
val, which is the same in both directions, is denoted by A.
Adjacent b the shock polar, the interval is adjusted sc that
the terminal Iattice points lie on the polar itself. For pur-
poses of formulating the firtite-dMerence equations, the Iat-
t.ice points are conveniently grouped’ into five categories as
follows (typicaI points in each category are indicated in
the tlgure):

a. Regular interred points
b. Points far ta the left
c. Points adjacent to the shock polar

.. .

A 1 L 1 1 1 1A
0-b

I
-1

FIGURElL—lllustmtire Eni2e4&rence lattice h the i,a phn?.

d. Points on the shock polar
e. Points on the sonic line

The form of the finitedillerence equation pertinent to each
category will be dedoped in the folIowing paragraphs.
The methods employed are standard, except for the some-
what novel treatment of the boundary conditions aIong the
shock polar and sonic line.

Regular internal points.-The category of regular internaI
points comprises all points interior to the boundaries but
not. immediately adjacent to the shock polar. The situa-
tion in the viciity of such a point. is as shown in figure 15.

I

A

FIGrM I&-Eeguk herd pobst.
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The diRerence equation which applies here is obtained by
suitable approximation to the dtierential equation (27).

If iL is assumed that the unkmown function #=#(i,~l
may be expanded locally in the form of a Taylor’s series,
tha values of # at 2 and 4 may be written (see&. 15)

*4=1o–W1O+; tilO-: h710+O(A4)

Addition of those equations and solution for ~~lo gives

Y%lo-+ (44 – 2~o+#,)+ O(A? (36a)

which is a welI-known difference expression for the second
derivative. The corresponding derivative in the vertical
direction is sixnilarIyrepresented by

#nlo=j+? (A–2#o+~1)+O(A9 (36b)

Substituting these expressions into tho differential equation
(27) and neglecting the terms O(A’) then gives for tho finitm~
difference equation at a regular intarnal point

*z+~4–2fio(!h+#s) -2(1 -2fio)#o=0 (37)

where ~0denoks the horizontal coordinate of the point in
question. The difl’erence equation for internaI poink is
thus the same for points on a given column but differs from
one cohunn to the next. For a point adjaccmt to the upper
boundaly OB—ae, for example, the point a’ in figure 14—the
vahm of *1 must be set equal to zero in accord with the
boundary condition (29). Similnr considerations hold for
points adjacent to the lower boundary 0.4,

Equation (37) represents the simplest possible linite-
differenee approximation h the differential equation (27).
As is apparent from the derivation, the error involved is of
O(A’). Consideration has been given to improving the ap-
proximation by including additional lattice points in the
finite-difference equation or by incorporating higher-order
difference corrections in the later relaxation work (c. f.,
references 34, 35, and 36). Because of the complicated
nature of the boundary conditions along the shock polar
and sonic line, howover, consistent application of these pro-
cedures did not appear feasible. The requisite accuracy in
the present work has therefore been achieved by suitable
dmreasc in thu mesh interval A in those regions in which
thti function # varies most rapidly. This procedure has tho
secondary advantage of providing closely spaced values of
the derivatives which are.required for the later transforma-
tion to Lhephysical plane.

Points far to the left.—In order to carry through the
numerical analysis, it is necessary that the finite-difference
Iattice be terminated at somo distance to the Ioft in the

hodograph. This can be done with the aid of an asymptotic
solution valid for large negat.ivovaIues of f.

By separation of variables, it can be ahown that the general

solution of the difTerentiaI equation (27) in the region

i ~ —1, O~~~~~, subject to the boundary conditions (28),
(29), and (30), is

where Klla is the modified Bessel function of the second kind
of order M(not.dion of reference 37) and A. is an appropriate
constant. At sufficiently large ncgativo values of i tho first
term of the serk will predominate, and the abovo solution
can bo approximated by

lf ~l,s is then replaced by the first term of ita asymptotic
expansion (reference 37, p. 202)

there results finally for * tlw exprwsion

()
.

#=B SiIl f
[ 1X(–3-11’exp –j; (–2W (38)

u w

where B is an unknowu constant.
The asymptotic solution (38) makes it possible to tern~i-

nate the finitedifference lattice at a position on the left.
Coneider a typical lattice point in a column located at
i= —B (m, fOrexampk, the point b in fig. 14). The I@h -

boring points are then as shown in figure 16, where the

48— ——-A— ——-!

A

●

3

Fmurm lo.-PofIlt at g- -1?.

point 4 now represents a fictitious lattice point Iocatcd at
‘=– @+A). If ~ is kken su~cicntly large that A/13<<1,T
then it follow from equation (38) thtit, to a fht order of
approxim~tion,

g=(’-$)+;’~)



TR.XXSOXIC FLOW PAST A WEDGE PROFILE WITE DETACHED BOW WAVE 775

Substitution of this value of +4 into the pret-ious equation
(37) gives for the finite-difference equation at a point on the
left-hand boundary

[“-+k’(-&9-*?+-%9(#L+#J+ (1

1
xl+w) to=~ (39)

The value of 19to be used in any particular c~se is determined
on the basis of computational experience. In general, the
larger the value of ~M,the larger must be the value of P b
assure that the use of the asymptotic solution (38) is justifkd.
Since the overall r~ult ~ insensitive to changes in the left-
htind portion of the field, however, the choice of 6 is not a
critical matter.

Points adjauent to the shock polar.—Points adjacent to the
shock polar require special treatment because of the irregu-
larity of the intervals encountered near the curved boundary.
C’onsider the typica~ case shown in figure 17 (corresponding
to point c in fig. 14). Here h and k define the length of the
irrqnda.r intervals relative to that of the regular interval A.

A A I
●
6 4

hi

/
/

i

FrG@tix17.–Poht aijwenttoshockmku.

To obtain the desired accuracy, it vms found advisable in
the present case to include three rather than tw-oneighboring
points in each of the coordinate directions. The value of +
nt the points 2, 4, and 6 is therefore written

(2A)’ (2A)S
*6=#0–2A#i[O+~ %j10–~#iii/0~o(~4)

.

These may be looked upon as constituting three simultaneous
equations for the first three derivatives of # in the horizontal
direction at the point O. Solution of these equations for
J’ii[. ti~~

kilo=+[
l–k 2(2–A-) 3–k——
2+k$a+ I+k $~——

~ 40+

The correspond@ exprw.sion for
that k is replaced by h and $1, #L,
reepectiwly. Substituting these expressions for the two
second derivatives into the differential equation (27) and
neglecting terms of O(AZ) then gives for the finite-diierenoe
equation at O

#,+ 2(2–k)
k(l+&2+k)

-@,–~$6–

This reduces to the prm-ious equation (37) when k=h=l.
(The functions of h and k which appear here have been
tabuIated in reference 38. The intervals of tabulation are
not always aufEcientIy small, however, to provide the
accuracy needed in the present work.)

Points on the shock polar.—In past applications of
numerical methods to probIema invoIving curved boundaries,
it has not ordinarily been the practice to use a Iattice with
points Iocated on the boundary itself. The prescribed bound-
ary conditions have then been incorporated in the following
manner (cf. references 39 and 40): First, the finitedifference
Iattice is extended, on the basis of the regular Iattice spacing,
to include fictitious points external to the boundary. This
makes the Iattice geometry at internal points adjacent to
the boundary the same as at d regular internaI points.
A’ext, with the aid of the boundary conditions and suitabIe
interpolation and extrapolation formulas, an expression is
obtained for the independent variabIe at each external point
in terms of the values at neighboring internal points. Fins.Uy,
by substituting these e-xpreasionainto the finite-ditTerence
equation for a regular point, the dtierence equations are
written for the internal points adjacent to the boundary.
In this way the boundary conditions are incorporated
implicitly into the difference equations at internal points.
The procedure is paralIeI in many respects to that used in
terminatiug the present lattice at the Ieft-hand side of the
field.

Although a procedure of the foregoing type can be devised
to take care of the boundary conditions on the shock polar,
a different approach was found ad-rantageous for the present
work. In this approach, the lattice points are pkwed
directly on the boundary as previously described, and a
difference equation is obtained at each such po”mtby suitable
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tlnitediffe.rence approximation to the boundary condition.
This leads to a somewhat larger system of simultaneous
equations than would t-hemore usual procedure but has been
founcl in the Iong run to give more accurate results with Iess
total effort.

The boundary condition (31), which is thus the basis for
the finitedifference equations on the shock polar, can be
written

#;–s(ij)#;=o (41)
where

The. problem now is to determine difference e.spressionsfor
t.h~derivatives ~ and ~ at points on the polar. Consider,
for example, the typical situation shown in figure ]8 (cor-
responding to point d of fig. 14). To determine +j, the vduc

t-
A—

A

2

—A
--1”

FIGURE I&—Point en shockpolar.

of # at each of the interior points 1, 2, and 3 is written, as
before, in terms of a T@or’s series about. tho boundary
point O. Solving the resuIting three equations for the
derivative & at O then gives

(42)

This expression, which includes terms of O(Az),is inconsistent
in order of accuracy with the expressionspreviously employed
in setting up the finite-difkence equations at interredpoints.
Since end differentiation is, even for a given order of mathe-

matical accuracy, inhere.ntIyless precise than diffwentifit.ion
at a midpoint (see error terms in reference 38), the retention
of the second-order terms was here thought. ndvisabIc.

The determination of the corresponding expression for ~i
is a bit more involved. Expanding+ at the boundary points
4 and 5 by means of Taylor’s series in tlro dimensions gives

i4=#o–Atilo-~M!o+# tiFlO+@’#~dO+U~’ tirlo+O(Aq

(eA)’
#S=#O+MIO+eW~lO+~ v%iIo+eA’#iiilo+~ #nlo+@)

An expression for *10 is already Iinown from ccpmt.ion (42)
in terms of #0, 41, t~, and #S, and an expression for M ~[ocan
aimiIarIybe determined. The two foregoing expansions may
thus be regarded as constituting two equations for the three
unknomla ~lo, ~~lo, and #f;lo. To solve for #~lo,one more
equation is necessary. This is provided by the differential
equation (27), which also applies on the boundary and which
may M written at tho point Oas

‘ ti;lo-zioti?lo=o

TIM solution for ~\. is then found as

(43)
where #ilo is given by the previous equation (42).1$

The required fl.nitdifference equation for the point on t.hc
shock polar can now be obtained by substituting expressions
(42) and (43) into the boundmy condition (41) and ncglect.-
ing tho higher-order terms in each case. The result can
finally be written

(l+hj(2+h)+2~(3 +2h) #(2+h)+4~Q ~ ~,+
2h l+h

IL(l+-h)+u(I +W ~a+eKi4_jA=+b_

!(2 +h)

[
h(2+h)+2(l+h)’

h(l+h)(2+h) +h(;:h)+(e–fl~] $o=o
(44)

where KuK(e, j,tic) and L =L(e, j,ij,) are given by

K=
1

(e+j)fl(i~ +2ej

Equation (44) is ecmvenient for points on the shock polar
for wtich –0.6s5<0. For —1<;< —0.6, the geueral
procedure is the same exeept that the points O, 1,2, and 3 are
now more conveniently located on a horizontal line and the
quantities e, j and h are.redefined accordingly (see @. 19).

Ii It will beUOtedthat themedidents inequatIoII (43)&cane mdc?bbly largefw~+-e md
we nndeflncd when~- -e. ThIe rosultefrom the fact that the dctermloed of the mclltcionh
In the slmuJtanBoueeqoatl(uu neW toobtefn fi~ovardabmwhen~--~ D.!mcuWCShr.I U

aowce am be avoided by jud!cionschoke of the lattb polnb.
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The resulting finiteditTerence equation is identical with
equation (44) except that the terms which previously arose
from the expression for ti10are now muh iplied by – 1.

Points on the sonic line. —The difference equation for
points on the sonic line is obtained by finite-dillerence ap-
proximation to the boundary condition (32), which can be
written, to the accuracy required in the numerical work, as

The procedure varies depending on whether the difference
equation is being written for the first point below the upper
boundary or for one of the lower points.
Firatpoint below boundary:

At the first point MOW the upper boundary the situation
is as shown in figure 20. To approximate the integral in

A

A A

ii i o
Fmcur 20.-Fimt @nt on smileline.

equation (45), use is made of GuderIey’s singular solution
for transonic flow over a convex corner (reference 18). On
the basis of this solution, it can be shown that the wu-iat.ion
of # along the vertical axis in the immediate vicinity of the
point B is of the form

U the lattice spacing is made sufficiently small, this asymp-
~tic rekdion may be taken as ‘appro.ximateIy correct over
:he entire intreval from B to 0, so.-thatwithin this~iterval

md
4 (;w_ j)us

#i=–~ $0 ~4fa

For the first point below the boundary, the integral in equa-
tion (45) can thus be written

s4#o =
‘“a ~, dr

mm . (I–T)

where ~= @m-#) /A. The integral on the right can be re-
duced to standard form by meansof the substitution T(I–r) =
S/4, which gives

J
1 J1d=“i’dr=~ m0 (1—T)~a 2~3 o ~,l—~a

This is an elliptic integral of the first-kind. Its value, as
determined from the equations and tables of reference 41, is

J
1 “: dr=&X~; =2.650

fJ(1—T)~a

The integral in equation (45) thus becomes, in the present
c&Qe,

To approximate the derivative $~ in equation (45), # is
expanded at points i and ii by means of a Taylor’s series
about point O. Terms invoIring #ti10may be omitted here,
since the dtierential equation (27) shows this derivative to
be identically zero at points on the sonic Iine. The values of
# at i and ii can thus be written

#i=#o–A]u!o–$ #iii!o+ 0(A41

4if=*o–Wi!o –(~ #tilo+O(A’)

Solution of these equations for #i10 gives,
order in A,

(-4ilo=~ ; +0–; #f+; *fi
)

to the second

(48)

Substitution of expressions (47) find (48) into the boundary
condition (45) gives the following finitditference equation
for the first point bdow the upper boundary

(49)
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T_Trdi~c the previous equations (37),
equation involves the \’alueof A.

Lower points:
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(39), (40), and (44) this

For a generaI point bcIow the first lattice point, the.situa-
tion is as represented in figure 21. The integral in the
boundary condition (28) is here evaIu~ted in three sections.

1-I

FmuP.ESL-Oencral point cmaan!cIlne.

The integral over the lattice interval from B ton-l is evalua-
te~ on tl;e basis of the asymptotic relation used before. The
integral from n-l h 1 is evaluated by assumimg a Iiicar
variation in # over each of the included intervals and then
integrating analytically. The linear assumption is suf-
ficiently accurate here, since this entire middle section con-
tributes only a relatively small portion of the complete
integral. The integral from 1 to O, which contains a singu-
larity in the integrand at the point 0, is evaluated by ex-
prwsing X as a cubic in terms of ita value at the points 2, 1, 0,
and -1 and then integrating analytically as before. The
midecl accuracy of the cubic is required here, since this last

section contributes by far the majority of the over-rtllvalue.
The boundary condition (45) may thus l.Mwritten

#fi(o)~)+o.34~(JI+ J2+JJ=o (50)

where the J’s represent the three component integrd9 just
described.

Proceeding to the dettiils of the above procedure, tfw
integral from B to n—1 is first writteu

where, as before, r= ((?U–#’)/A. This intcgraI can I.M
expressed, if desired, as the difference of two Wiptic intvgmls
of the first kind. For present purposes, however, it is more
convenient (and sufficiently accurate) to expand (n—r) ‘fi’a
according to the binomial theorem and int.egratr Wmwisc.
This gives finalIy

Jl=(&2,a(l + &+**+&a+&+ “ “ “)*.-I (51)

Thk expression is used, of course, only for n >2.
On t~c lmsis of the assumption of a linear vmiation of #

between adjacent Iattice.points, the integral from n– 1 to 1
becomes

Carrying out the intt’gration gives

J,=A~ ‘>: [(m+ IY’8-mW (#m–h+J (52a)

This expression is valid for n23. (For n=2, JS obviously
does not exist.) For n>3 it is convenient to rewrite the
summation so that the due of # at a given point is not
repeated in successive terms of the series. This is done by
separating expression (52a) into two series (one with #M.aml
one with +~+1), expwding these series, and tiwn regrouping
terms. The result is finally

{
J*=+a [21/a—1]#1+n~2 [(m+ l)l@-2?n*/a+(9n —l)q6.-

A m=3

1
[(n– 1)’/’–2)–a]#,_, #,_, (52b)

This expression is vaIid for n24.
To. evaluate the integral from 1 to O, # is rcprc&~tcd

withh thii interval by a cubic of the form

where a, b, c, and c1arc determined such thuL # has Lhc
proper vaIues at the points 2, 1, 0, and —1, This exprmsion
is to be substituted into the integral

J,= J o.-m A Ih(o, 8’)
di’

?U- (m-l)A {nA—(ijW—~’)]tfk
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mt result is finally, after evahiation of the coefficients a, b,
c, and d,

The finite-difference equation for a general point on the
sonic line can now-be obtained by replacing the J’s in equation
(50) by the expressions (51), (52), and (53) and using the
previous eqmession (48) for the derivative MO. The result
is a lengthy linear equation involving the value of # at the
points i, ii, —1, 0, 1, 2, . . . , n— 1, n. Fortunately for the
Iater relaxation work, the coefficients of the terms turn out
to be relatively small for alI points above the point 2.

Distribution of mesh points.-Wlen an attempt is made to
solve the present probIem with a coarse mesh, it is soon found
that most- of the variation in # takes place in a relatively
smaIl region near the intersection of the shock polar and
sonic line. To obtain a sutllciently accurate solution in a
practicable Iength of time, it is therefore necessary to employ
a graded lattice, that is, a Iattice which has dtierent spacing
in different parts of the field. F@re 22 shows the distribu-
tion of lattice spacing found satisfactory in a typical case
(~m= 1.6). The particular arrangement shown here involves

I
A=0.2

~

1[.4

/ ““ml

i I
1 I 8 I I I t

-2L) -1.8 -1S -[.4 -[.z -LO -.8 -.6 -.4 -.2 =7

a total of 228 lattice points. For other ~alues of ~a, the
grading of the lattice follows the same general scheme.
Ob\iousIy, however, the totaI number of Iattice points must
be increased ss the upper boundary ia moved farther from
the shock polar.14

Formulas (51), (52), and (53j, which are used to approxi-
mate the integral aIong the sonic line, presume the existence
of lattice points at a uniform interval orer the full distance
from the upper boundary to the point in question. This
cont~tion is not fulfilled in a graded lattice such as that
indicated in figure !22. Some modification of the method

n tiordy, when two @nts on cme&eent to the shock pobr Ml vsrs dose tomther,
am M the pofnts is srbkrmily omitted. An emmesdonfcr the omhted aus of k, whfoh fs
then neeessarYto completethedifferenceeqnattonat neighboringcduts, h fonndby pardxifc
Int@rpnlatfonbetween the values M the swilable lcuthms.

must therefore be made to obtain the finite-clifference equa-
tion for a point on the sonic line in one of the regions of finer
mesh. This requirement was satisfied by means of a simple
averaging process in which the contribution of nonexistent
f&-mesh points is replaced by an average contribution
expressed in terms of # at bracketing points on the a-railable “-
coarser net. Siice the contribution of individual points is
small even for points only moderately removed from that
at which the equation applies, a rather crude averaging
process is sufficient in most cases. (The detaiIs need not
be given here as they would soon become apparent to anyone
working ~ith the method.) When the averaging procedure
would not be sulliciently accurate (as when the point at
Aich the equation applies is near the line of demarcation
between two di.tlerentsized meshes), fictitious intermediate
points are introduced into the coarser net and the value of #
at these points is obtained from plots of the distribution of
$ along the sonic line.

SOLUTION OF FINITE-DfPFESENCE EQUATIONS

By the methods of the foregoing section, a finitediRerence
equation can be obta-med for each lattice point “mthe hodo-
graph plane. The result is a large number of simultaneous
algebraic equations involving an equal number of unknown
values of ~. Since the number of unknowmsin each equation
is smaU, the equations lend themselves vrelI to solution by
rel%~ationtechniques.ls

The mechanics of the relaxation process hare been well
described by various authors (references 30, 31, 32, and 33)
and need not be gone into here. For present purposes it was
found satisfactory to take #~ in the boundary condition (33)
equal to 10,000 and work with integer values~of# throughout
most of the field. The residuak in the rek..ation process
were eliminated to within limits of +2 (with due care, of
course, that all residuals in any given area were not pm.
dominateIy of the same sign). To obtain satisfactory smooth-
ness of the scdution near the left-hand boundary in some
examples, it was neeessary in this region to work with values
of # to 0.1 and eliminate residuals to within +0.5. When-
ever the coefficients in t-he finite-difference equations were
relatively smaII, the corresponding terms were neglected in
the point-by-point. adjustment of +. The error so intro-
duced was eliminated periodically by recomput”~ the residu-
aIs using all terms in the finitediflerence equations. This
procedure was particularly helpful in the case of the lengthy
equations which apply at points on the sonic line. The
transition between the various regions of the graded lattice,
which is not often discussed in the literature~ was accom-
plished by the use of overlapping fiekls in es-sentialIythe
manner described in reference 42.

B-y means of the foregoing procedures, the boundary-value
problem in the hodograph pIane has btwnsolved for values of
;W of 1.3, 1.6, 2.4, and 4.2. These are equivalent, reapec-
tiveIy (see equation (35)), to values of & of 1.05S, 0.921,
0.703, and 0.484 as given previously in part I. As an ex-
ampIe of the solution in the lmdograph plane, the variation
of+ for ~m=l.6 is shown as a function of ~ and ~ in figure 23.

ISIt k Inttwe@ingto note that, M ths rvmpMs set d dmuhnewa eqnstton% onb twc-
thcse kmthe pofntsm thedmck POIXml sodc IfrtehnmedhteIy?.djaemtto thepdnt E—
are not homogemwos. OnIy thk L@ prerents the solution ti tbe complete wt from bdng
idNltfedlF zero.
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FIOURE z3.-Representa.tIon of # 8S8 fuucth of ~ and; fo!’&=l.6 (t.-o.g~).

(These rcsuks correspond to the resultsshown in the physicaI
plane in fig. 3.) Figure 23 shows clearIy the rapid variation
of ~ near the intersection of the shock poIar and sonic line.
The calculated values of X corresponding to figure 23 are
listed in table 1 at the end of the report.

TRANSFOENIATIONTO PHYSICALPLANE
FLOWFIELD

The transformation from the hodograph plane to the
physical plane is governed, in the smalld~turbance tlwry,
by the foIIowing equations (cf. reference 2):

theory, all stream.lkcs appear as straight lines pmnllel to
the horizontal axis. When expressed in terms of i and ~
the foregoing equations become

The length Zof the wedge, which is equal to one-half the
chord of the double-wedge profile, can be found by intc~
grating the fmt of these cquationa over the uppm boundary
OB of .thchodograph (see fig. 24). This gives

----

the second of thwe equations implim that, in a flow field
determined according to the transonic small-disturbance I ‘=:=% fix’.r.’fi’$’”’d’
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FIGURE!2!.-SmNl4lsturtsnce hodograph tn norms!fzed fcmn.

\J-it~ this relation the prerious transformation equations
can be put in the dimensionless form

(54)

(55)

whpre 1. represents the integral

Iu= r i~i(it~~)di (56)
.-m

To obtain the tlow field in the form gi~=enin part I, equation
(55) must be rewritten in terms of the ordinate function y
(see equation (2) j. The result, derived with the
relation

Integrating this relation, subject to the condition
when ~=0, gives

()g“ _(2i=yig
1-= [(Y+ l)w)l”s ~ –~ #

aid of the

(57a)

that 1-= o

(57b)

To utilize the foregoing equations for actual computations,
it is first necessary to evaluate Is. Siice numerical dues
of # are arailable in the hodograph only for —ps ijs O, the
evaluation must be caried out in two parts as foIIows:

The first integral is evahwted from the results of the numer-
icaIsolution by mechanical integration of a cum-e of ti~l(ij,~=)
versus i. The dues of the derivative used for this purpose
are obtained from the equation

W=:(+*++*2) (59)

o

A

I)1

A

●2

FIQGM ZS.-Pofnt on n- botmdsry.

where the notation is as shown in figure 25. This equation
is derived in the same way as equation (48], except that-+6
is here taken equal to zero in accord with the boundary con-
dition.~a It can be shown from Guderley’s singular sohxtion
for corner flow that for snd negative values of a the curve
of ijti(ij, 8J must behave essentially as Iijlsfl. This result is
useful in fairing the numerical reanks near ij= O. The first
integral in equation (58) contributes by far the majority
(about 99 percent) of the total value of 1“.

To evaluate the second integral in equation (58) use is
again made of the asymptotic scdution (W). For this pur-
pose, the constant B is determined such that the due of #i
given by the asymptotic solution matches the numerically
determined due at the point (–13,i7J. Substitution of.
equation (38) into the second integral of equation (58) then
giw

where ~(— P,8J is determined from equation (59) applied
at i= –B. The integd on the right is transformed through
the substitution

Z_ (_~33t2=U

3au
which gires

uTIMfactthat the smnil derhthe *!G mar be aken ea zero h the Present derivntim
follows fkomthe boundary condition and the dffTervntlsleqostbm (10).
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The integrrd here is then found with sufficient accuracy by
mwms of the following asymptotic formula, valid for large
values of the lower limit (see pp. 95-96 of reference 43):

J
m

w’-le-rndu ~.s’-l;-;
2

Equation (60) thus reduces finally to

J -6 ()p“’:M-MJwi(i io)d<=- ~ (61)
-m

\l’ith the value of 1~ known, equations (54) and (57) can bo
used to obhiin the. coordinates x/c and ~ corresponding to
tiny point. in the ij,~ plane. The value of Y is obtained by
direct substitution of the appropriate value of ~ into equation
(57b). The value of z/c must be found by suitable integra-
tion of equation (54). The. location of the vertex A of the
shock wave is found, for example, by integrating equation
(54) along the line OA in the hodograph (see fig. 24). If the
leading edge O is taken as the origin in the physical plane,
this gives

(62)

The integral here is evaluated in two parts following the pro-
cedure previously used in determining lW.

For the abscissa of a point F on the shock wave, equation
(54) gives

(:)F=(:)A++f:(2iMd’+’’d’)

where the integration is now taken from A to F along the
shock polar. For purposes of numerical evaluation, the
integrand here can be simplified by writing

If (&/#i) and (di/dij) arc rephtced by the.appropriate func-
tions of ij from equations (31), there results finally

(63)

The. integral in this equation is evaluated by plotting a curve
of # versus ~~ ‘from the-numerical results along the shock
poIar and carrying out the necessary integration by me-
chanical means.

The abscissa of a point on the sonic Iine is found by inte-
grating equation (54) along the ~ axis from B to C?. Since
point.B is situated in the physical plane at z/c=~, this gives

(64)

Tlw integral here is evaluated by mechanical integration of a
curve of ~~(0,~) versus ~, where *(O, ~) is found from equa-
tion (48). As can be seen from equation (45) and relation
(46), X;(O,~) in the vicinity of point B varies essentially as
(~W–~)’1’. This fact is of use in drawing the curve of ~(0,~)
nem ~= ~W. It can further be seen with thu aid of equation

(57b) that near the shoulder of the wedge the transformed
sonic line has the form

This relation is useful in establishing the detailed shape of
the sonic line in the physical plane. It shows, in particuhtr,
that th-esonic line will have a verticaI tangent and an infinite
curvature at the shoulder of the wedge.

PRESSUBE DISTRIBUTION AND DRAG

To comp~ete the analysis of the front wedge, it is left to
determine.the pressuredistribution and drag, Integration of
equation (54) gives for the c.hordwiselocation on the wodgc
of a given vfdue of i

or

The speed parameter ~= (A@— 1)/1(7+ 1)(t/c)]2’$,which was
used to presen”tthe rcsults in part 1, is related to ij by the
following equation, derived with the aid of equations (18),
(26), (34), and (35):

(66)

lVith these equations, the distribution of t m a function of
x/c is readily determined. The integration of equation (65)
is carried out by mechanical means using the samo curve
previously employed to determine Iw. To fair the resulting f
curve. in the vicinity of the shoulder, usc is again mrtdc of
Guderley’s analytical findings, which show thtit in this
vicinity

/1 x\~b
-(%-;)

‘iVith the chordwise distribution of ~ known, the pressure
distribution and drag can be found as dcscribwl h pmt I
(see equations (7), (8), and (10)) .17

CHARACTERISTICS CONSTRUCTION OVER REAR OF AIRFOIL

The characteristics in the ~, ~ plane (ij>O) are given by
the folIowing relation obtained from equations (20] and (26):

(67)

The corresponding directions of the Mach lines in the
generalized physiwd plane, as determined from. this relation
and the transformation equations (54) and (57a), are

dY - *(2Q’/’— —
d(x/c) @i)’/’ “- -- .

(68)

To the present order of approximation, therefore, the slopo
of the hfach lines is independent of the local inclination ti.

mThE~~ld ~owam forthedngularltyat thelendfngedge,rnentIonti[nconnwtlon

w!th oquntion(lOb), Is easiIYfound w[th the eld of tha asymptotic eolutlon @S).
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This is consistent with the previous result. that the stream-
lines must appear in the physical plane as horizontal straight
lines. As a consequence, the construction of the Mach net
over the rear of the airfoi~ is particularly simple in the
smaIldisturbance theory.

To aid in the construction, the equations for the characte~
istics in the 6,8 plane can be conveniently written in the form

The symbols & and ~. denote, respectively, the ordinates
at which the upgoing and downgoing characteristics through
a @-ven point (f, J) intersect the vertical axis. Elimination
of o between these equations gives

which can be substituted into equation (6S) to obtain

(69)

(70)

This is the basic relation for the characteristic construction
in the physical plane.

The construction of the Mach net itself follows a simple
lattice-point. procedure (cf. reference 44). By identif-ying
each Mach line with its appropriate value of G. or & the
value of dy/d(z/c) at the intersection of any two SIach lines
can easily be determined from equation (70) (or its graphical
equivalent j. The basic construction neceesa.ryto locate an
unknown point c from the location of two known points a
and b is then as indicated in figure 26. The construction

< ,,.---H..=M+%IC+[%jl),/

I b

Xlc

Fhwnx 2fi.-Baefc ecmstmcthn for&X&AeHetfm net.

proceeds rapidly since, as pointed out, variations in the
inclinat.ionof flow need not be considered in establishing the
direction of the Mach limes. ‘iThere desired, the value of
~ can be found from the relation

~_&+6.
~ (71)

The corresponding value of i is given by equation (69).’s
Figure 27 shows a typical Mach net constructed by step-

wise application of the foregoing procedure. This net is for
the case of ~.= 1.6 (f,= O.921) and corresponds to the flow
field shown for the front of the airfoiI in figure 3. The con-
struction is begun at the shoulder of the airfoil (x/c=l/2,
~=0) with the values of ;= selected to provide approxi-
mately equal spacing between t-heMach-fines of the expan-
sion fan. From the shoulder, the construction is carried
outward tu the sonic line and then inward to the rears urface
of the airfoil. The drawing of the Mach-line segments
adjoining the sonic line might appear at first to offer some
ditEculty, since a linear average is obviously unreliable to
determine a mean inclination in this vicinity. Actually, no
trouble is encountered from this source, since the point at ,
which each Mach liie meets the sonic line is already known
from the hodograph solution for the subsonic fie~d. The
construction of the last segment approaching the sonic line
thus reduces to a matter of simply connecting two known
points. The slope of the first segment leaving the sonic
line is found by either (a) multipl-ying the slope of the
approaching segment by —1, or (b) determining a mean
inclination based on the easily demonstrated fact that a
Mach line in the vicinity of the sonic line behaves essentially
as a semicubicrd parabola.le It is immaterial to the fired
result which procedure is used. The identity of the Mach
lines reflected from the rear surface of the airfoiI is determined
from equation (71) plus the boundary condition that at th~ --
surface ~= —~W. AS can be seen by comparing figures 3
and 27, only a relatively smalf portion of the sonic Iiie
need be known to determine conditions on the rear of the
airfoil.

RE31ARKSON ACCURACYOF SOLUTIOX

Quantitative statements with regard to the accuracy of
the prsent remdts are dit3cult to make. Fortunately, how-
ever, a check on the accuracy of the solution is available in
the work itself. This check derives from the ftict that, in
the subsonic portion of the field, the calculated location of
a given velocity in the physical plane should, tlworetically,
be independent of the path of integration which is followed
in the hodograph. Thus, for example, the position of the”
-relocity @O, ~=1, which defines the point of intersection
E of the shock wave and sonic line, should be the same
irrespective of whether it. is found from equations (62) and
(63)

or from equation (64)

(73)

II IU prWIW, the ecmstmctionfs actua!ly carrfed out mmt eaNly LnfJpfsne Of YI(M-JN
versusr/cwfth the slope of the kfsch llnes given by

Thle allows a @Ie graph of slope vemus(~i-&J to sufficefor sll valnesof8.. It also pro.
tidH wmewhst more wnvemient proportions for the eoneectfon of the Medi net.

~ The 18tterpoesiblliry was @Uedouttotheauthorsby Gottfrki Guderley.
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FIGIME 27.-Ma.ch net over rem of ah’fofl for ?w-1.6 (f.-O.’ZI).
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Actually, ss was obserred in connection with &ure 2, the
results of the two determinations show a small discrepancy.
Such a result would be expected in tin~ finitedifference
solution.

Discrepancies of the type noted can arise from two sources:
(1) numericaI inaccuracies in the relaxation solution of the
finite~erence equations or in the transformat.ion to the
physical plane; (2) inaccuracies caused by the fact that the
finite-dMerence equations theme-elms are not an exact
representation of the boundary-vaIue problem for the
original partial differential equation. Experience with
various refinements in the calculations indicates that the
discrepancies here are primariIy of the Iatter origin. Early
computations with a coarse Iattice and relatively crude
finite-diRerence equations showed a considerable gap between
the shock wave and the end of the sonic line. Increasing
refinements in the grading of the lattice and in the derivation
of certain of the finite-ditlerence equations gave progressive
improvement in reducing this gap. This improvement came
about primmdy as a result of progreeai~e reduction in the
value of the integral Iw, the other integrals in equations (72)
and (73) being relatively tiected by the refinements in
the calculations. Indications are that, in the results which

were taken as final, the vahms of ~ti(ij,~J I and hence of Ii
. are still somewhat too hwge. This means (see equation
(57b)) that the ordinates of the shock wave and sonic Line
are probably somewhat smaller than they should be. The
mme is probably true, in general, of the corresponding values
of [z/cl. Calculations of the chordwise distribution of ii on
the surface. of the airfoiI are, however, considerably more
precise, since the errors in the two integds in equation (65)
tend to compensate. The refinements in the computations
were, in fact, carried to the point where further betterment
wmsed only negligible change in the pressure distribution and
over-aII drag. Further evidence of the accuracy of the
results in this regard is provided by the ease with which
the computed -ralues fair into the results of Guderley and
Yoshihara at f- and into the analytical curves vitich are
a~ailable when the bow ware is attached and the flow is
completely supersonic (see &s. 5 and 7).

A~ES &ROXAGTICAL ~ABOR.4TOBY,

NTATIONAL ADYISORY COMMITTEE FOR ~EROXAUTICS,

X1 OFFETT FIELD, CALIF., Oct. 8, 1961.

APPENDIX

EXACT RELATIONS FOR SLOPE OF DRAG CURVE
Al! A FREE-STREAhl MACH NUMBER OF 1

ln part 1 of this report, ~~act relations are given for the
slope of the curve of drag coefficient versus free-stieam Mach
number at a fre~trea.m Mach number of 1. These rela-
tions are based on the fact that at thesonic flight condition
the Iocd Mach number M at the surface of an airfoiI is
stationary with respect to variations in the free-stream hlach
number M.-that is, (dM/dMojM~.1= O. The detai.Ia of
the derivation are giren in the following paragraphs. The re-
sults are not restricted to a doubl+wedge section but are
applicable ta the zero-lift drag of a symmetrical profile of
any shape.

The general equation for the pressure coefficient, valid for
any Mach number and thickness ratio, can be written

,.-.(iriz)ik ‘A’)c,=p;~=p=x%–? p ‘“
!I*

where p is the static pressure at an arbitra~ point on the air-
foiI, p. and q. are the static and dynamic pr~nres at. the
point on the airfoiI at which .31=1, and p, and q, are the
static and dynamic pressurcx in the free stream. Vi’hen
Ma= 1, conditions in the free stream and at the sonic point
are obviously equal (p,M*-l=p*Ma-l, qaxe-l= q*xa-l) so that

(M)

Differentiation of equation (Al) ~ith respect to llla then
gives for the rate of change of the pressure coefEcient at
31,=1

(A3)

11 is now necessary to evaluate the three derivatives on the
right-hand side of this equation.

If there are no shock wa~es present on the surface of the
airfoiI, the ratio Plpmcan be esp=ed SOMYin terms of the
local Mach number by an isentropic equation of the form

2= f (Afj
P*

where the esact nature of the function is immaterial m
the prasent application. From this equation md from the
known fact that (d3f@.31Jxo-,=0, it follows at once that

If there are shock waves present on the airfoil, the argument
is slightly more involved, but the same re.sndt applies.
Equation (A4) states, in effect, that as the free-stream Mach
number varies from unity the entire pressure distribution on
the surface of the sirfoiI varies hi direct proportion to the --
pressure at the sonic point.

The derivative [d(pJp*)/dM&l, which defines the rela-
tive variation between the static pressures in the free stream
and at the sonic point, can be found by first expressing the
ratio p~px in terms of the free~tream Mach number M..
The necessary e-spression can be obtained either from the
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equations for isentropic flow alone (iMO<1, no shock wave
ahetid of the airfoil) or from these equations plus the cqua-
ticms for the normal shock wave (MO> 1, detachcd wave
ahead of airfoil). In either case, if the expressionis expanded
about ill.= 1 in terms of ascending powers of (~402—1), the
resu~tis

Differentiation of this equation then gives

[d%t?)l . . ..%l-%l
(A5)

The derivative [d(g&)/dl14& 1, which defines the rela-
tive variation between the dynamic pressures in the free
stream and at the sonic point, can be found by expressing
g,/~ in terms of known quantities. The necessa~ relation
is given by

()
fi= & ~Jfo2
q* P*

from which it follows that

The findings of equations (A4), (A5), and (A6) can now be
substituted into the previous equation (A3). The result is
the following important relation for the rate of chmge of the
pressure coefficient at the sonic flight speed:

This relation is exact within the limitations of tho inviscid
theory and is applicable to an airfoii of any sha.pc. and
thickrmssratio.

The drag codicient of the front portion of any symmetrical
airfoil at zero Liftcan be written

(t/c)

“,=S.2W)
2

where the integration is carried out over the surface forwm-d
of the position of uw~imum thickness, Differentiation of
this equation with respect to df. and substitution from
equation (A7) gives, after integration,

()dc~~
=~(’)-*(%)M..* W

TM; Me-l 7+1 c

Similar reasoning give9 for the rear portion of the airfoil

(-)dc%

dil~o .WO=l
=-*(:)-* (%.., (J~9)

It is apparmt

for the complete uirfoil

dc,(–)d.!!. die-l =–* (%.., (A1o)

from the foregoing derivation that. the tvrnl

proportional to the drag coefficient in each of these equationa
appeam as a consequence of the relative variation between
the dynamic pressures in the free stream and at L11Osonic
point. The term proportiomd to t/c in equations (A8) and
(A9) is a result of the relative variation between the corre-
sponding static pressures.
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